第二十一讲 矩形 菱形 正方形 下载本文

是否仍然成立,并选取图2证明你的判断. (2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD= 4,CF=1,BF交AC于点H,交AD3于点O,连接BD、AF,求BD2+AF2的值. 4.解:(1)①BF=AD,BF⊥AD; ②BF=AD,BF⊥AD仍然成立, 证明:∵△ABC是等腰直角三角形,∠ACB=90°, ∴AC=BC, ∵四边形CDEF是正方形, ∴CD=CF,∠FCD=90°, ∴∠ACB+∠ACF=∠FCD+∠ACF, 即∠BCF=∠ACD, 在△BCF和△ACD中 ??BC?AC??BCF??ACD, ??CF?CD∴△BCF≌△ACD(SAS), ∴BF=AD,∠CBF=∠CAD, 又∵∠BHC=∠AHO,∠CBH+∠BHC=90°, ∴∠CAD+∠AHO=90°, ∴∠AOH=90°, ∴BF⊥AD; (2)证明:连接DF, ∵四边形CDEF是矩形, ∴∠FCD=90°, 又∵∠ACB=90°,

∴∠ACB=∠FCD ∴∠ACB+∠ACF=∠FCD+∠ACF, 即∠BCF=∠ACD, ∵AC=4,BC=3,CD=∴4,CF=1, 3BCCF3??, ACCD4∴△BCF∽△ACD, ∴∠CBF=∠CAD, 又∵∠BHC=∠AHO,∠CBH+∠BHC=90° ∴∠CAD+∠AHO=90°, ∴∠AOH=90°, ∴BF⊥AD, ∴∠BOD=∠AOB=90°, ∴BD2=OB2+OD2,AF2=OA2+OF2,AB2=OA2+OB2,DF2=OF2+OD2, ∴BD2+AF2=OB2+OD2+OA2+OF2=AB2+DF2, ∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3, ∴AB2=AC2+BC2=32+42=25, ∵在Rt△FCD中,∠FCD=90°,CD=∴DF2=CD2+CF2=(4,CF=1, 342225)+1=, 3925250∴BD2+AF2=AB2+DF2=25+=. 99【聚焦山东中考】

1.(2013?威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( ) A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF

1.D 2.(2013?枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( ) A.3-1

B.3-5 C.5+1

D.5-1

2.D 3.(2013?临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是 .

3.33 4.(2013?烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画 ?连结AF,CF,则图中阴影部分面积为 . AC,

4.4π 5.(2013?济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+3. 其中正确的序号是 (把你认为正确的都填上).

5.①②④

6.(2013?济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.

(1)求证:AF=BE;

(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.

6.(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°, ∴∠DAF+∠BAF=90°, ∵AF⊥BE,

∴∠ABE+∠BAF=90°, ∴∠ABE=∠DAF,

∵在△ABE和△DAF中,

??ABE??DAF?, ?AB?AD??BAE??D?∴△ABE≌△DAF(ASA), ∴AF=BE;

(2)解:MP与NQ相等.

理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E, 则与(1)的情况完全相同. 7.(2013?青岛)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点. (1)求证:△ABM≌△DCM;

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;