2017-2018学年人教版高中数学选修2-1全册教案

2017-2018学年人教版高中数学

选修2-1全册教案

目录

1.1.1 命题 ................................................................................... 1 1.2.2充要条件 ........................................................................... 5 1.3.3非.......................................................................................... 8 1.4.1全称量词1.4.2存在量词 ..................................................... 11 2.1 椭 圆 ........................................................................... 15 2.1.2椭圆中焦点三角形的性质及应用 ......................................... 24 2.2.1椭圆及其标准方程 ............................................................... 26 2.2.1 双曲线及其标准方程 ................................................... 30 2.2.2双曲线第二定义 .................................................................. 35 2.4抛物线 ................................................................................... 39 2.4.1抛物线及标准方程 ............................................................... 42 2.4.2 抛物线的几何性质 .............................................................. 45 3.1空间向量及其运算(一) ....................................................... 48 3.1.2空间向量及其运算(二) ......................................................... 52 3.2立体几何中的向量方法空间距离 ............................................ 56 向量的内积与二面角的计算 ......................................................... 58 向量的数量积(2) ...................................................................... 62

2018新人教A版高中数学选修2-1教案

1.1.1 命题

(一)教学目标

1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成

难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。 (三)教学过程 学生探究过程: 1.复习回顾

初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析

下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点 . (2)2+4=7.

(3)垂直于同一条直线的两个平面平行. (4)若x=1,则x=1.

1

2

2018新人教A版高中数学选修2-1教案

(5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断

学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳

定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子. 教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解. 5.练习、深化

判断下列语句是否为命题?

(1)空集是任何集合的子集. (2)若整数a是素数,则是a奇数.

(3)指数函数是增函数吗? (4)若平面上两条直线不相交,则这两条直线平行. (5)

(?2)2=-2. (6)x>15.

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题. 解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

2

2018新人教A版高中数学选修2-1教案

通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢? 6.命题的构成――条件和结论

定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者 “如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论. 7.练习、深化

指出下列命题中的条件p和结论q,并判断各命题的真假. (1)若整数a能被2整除,则a是偶数.

(2)若四边行是菱形,则它的对角线互相垂直平分. (3)若a>0,b>0,则a+b>0. (4)若a>0,b>0,则a+b<0. (5)垂直于同一条直线的两个平面平行.

此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”. 解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题

3

联系客服:779662525#qq.com(#替换为@)