?
²é¿´ ÃèÊö
ÊäÈëÁ½¸önÐÐmÁеľØÕóAºÍB£¬Êä³öËüÃǵĺÍA+B¡£
ÊäÈë
µÚÒ»Ðаüº¬Á½¸öÕûÊýnºÍm£¬±íʾ¾ØÕóµÄÐÐÊýºÍÁÐÊý¡£1 <= n <= 100£¬1 <= m <= 100¡£
½ÓÏÂÀ´nÐУ¬Ã¿ÐÐm¸öÕûÊý£¬±íʾ¾ØÕóAµÄÔªËØ¡£ ½ÓÏÂÀ´nÐУ¬Ã¿ÐÐm¸öÕûÊý£¬±íʾ¾ØÕóBµÄÔªËØ¡£
ÏàÁÚÁ½¸öÕûÊýÖ®¼äÓõ¥¸ö¿Õ¸ñ¸ô¿ª£¬Ã¿¸öÔªËؾùÔÚ1~1000Ö®¼ä¡£
Êä³ö
nÐУ¬Ã¿ÐÐm¸öÕûÊý£¬±íʾ¾ØÕó¼Ó·¨µÄ½á¹û¡£ÏàÁÚÁ½¸öÕûÊýÖ®¼äÓõ¥¸ö¿Õ¸ñ¸ô¿ª¡£
ÑùÀýÊäÈë 3 3 1 2 3 1 2 3 1 2 3 1 2 3 4 5 6 7 8 9 ÑùÀýÊä³ö 2 4 6 5 7 9 8 10 12
08:¾ØÕó³Ë·¨
ÃèÊö
¼ÆËãÁ½¸ö¾ØÕóµÄ³Ë·¨¡£n*m½×µÄ¾ØÕóA³ËÒÔm*k½×µÄ¾ØÕóBµÃµ½µÄ¾ØÕóC ÊÇn*k½×µÄ£¬ÇÒC[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + ¡¡ +A[i][m-1]*B[m-1][j](C[i][j]±íʾC¾ØÕóÖеÚiÐеÚjÁÐÔªËØ)¡£
ÊäÈë
µÚÒ»ÐÐΪn, m, k£¬±íʾA¾ØÕóÊÇnÐÐmÁУ¬B¾ØÕóÊÇmÐÐkÁУ¬n, m, k¾ùСÓÚ100
È»ºóÏȺóÊäÈëAºÍBÁ½¸ö¾ØÕó£¬A¾ØÕónÐÐmÁУ¬B¾ØÕómÐÐkÁУ¬¾ØÕóÖÐÿ¸öÔªËصľø¶ÔÖµ²»»á´óÓÚ1000¡£
Êä³ö
Êä³ö¾ØÕóC£¬Ò»¹²nÐУ¬Ã¿ÐÐk¸öÕûÊý£¬ÕûÊýÖ®¼äÒÔÒ»¸ö¿Õ¸ñ·Ö¿ª¡£
ÑùÀýÊäÈë 3 2 3 1 1 1 1 1 1 1 1 1 1 1 1 ÑùÀýÊä³ö 2 2 2 2 2 2 2 2 2
09:¾ØÕóתÖÃ
? ? ? ?
²é¿´ Ìá½» ͳ¼Æ ÌáÎÊ
×Üʱ¼äÏÞÖÆ:
1000ms
ÄÚ´æÏÞÖÆ:
65536kB
ÃèÊö
ÊäÈëÒ»¸önÐÐmÁеľØÕóA£¬Êä³öËüµÄתÖÃAT¡£
ÊäÈë
µÚÒ»Ðаüº¬Á½¸öÕûÊýnºÍm£¬±íʾ¾ØÕóAµÄÐÐÊýºÍÁÐÊý¡£1 <= n <= 100£¬1 <= m <= 100¡£
½ÓÏÂÀ´nÐУ¬Ã¿ÐÐm¸öÕûÊý£¬±íʾ¾ØÕóAµÄÔªËØ¡£ÏàÁÚÁ½¸öÕûÊýÖ®¼äÓõ¥¸ö¿Õ¸ñ¸ô¿ª£¬Ã¿¸öÔªËؾùÔÚ1~1000Ö®¼ä¡£
Êä³ö
mÐУ¬Ã¿ÐÐn¸öÕûÊý£¬Îª¾ØÕóAµÄתÖá£ÏàÁÚÁ½¸öÕûÊýÖ®¼äÓõ¥¸ö¿Õ¸ñ¸ô¿ª¡£
ÑùÀýÊäÈë 3 3 1 2 3 4 5 6 7 8 9 ÑùÀýÊä³ö 1 4 7 2 5 8 3 6 9
10:ͼÏñÐýת
? ? ? ?
²é¿´ Ìá½» ͳ¼Æ ÌáÎÊ
×Üʱ¼äÏÞÖÆ:
1000ms
ÄÚ´æÏÞÖÆ:
65536kB
ÃèÊö
ÊäÈëÒ»¸önÐÐmÁеĺڰ×ͼÏñ£¬½«Ëü˳ʱÕëÐýת90¶ÈºóÊä³ö¡£
ÊäÈë
µÚÒ»Ðаüº¬Á½¸öÕûÊýnºÍm£¬±íʾͼÏñ°üº¬ÏñËصãµÄÐÐÊýºÍÁÐÊý¡£1 <= n <= 100£¬1 <= m <= 100¡£
½ÓÏÂÀ´nÐУ¬Ã¿ÐÐm¸öÕûÊý£¬±íʾͼÏñµÄÿ¸öÏñËصã»Ò¶È¡£ÏàÁÚÁ½¸öÕûÊýÖ®¼äÓõ¥¸ö¿Õ¸ñ¸ô¿ª£¬Ã¿¸öÔªËؾùÔÚ0~255Ö®¼ä¡£
Êä³ö
mÐУ¬Ã¿ÐÐn¸öÕûÊý£¬ÎªË³Ê±ÕëÐýת90¶ÈºóµÄͼÏñ¡£ÏàÁÚÁ½¸öÕûÊýÖ®¼äÓõ¥¸ö¿Õ¸ñ¸ô¿ª¡£
ÑùÀýÊäÈë 3 3 1 2 3 4 5 6 7 8 9 ÑùÀýÊä³ö 7 4 1 8 5 2 9 6 3
11:±ä»ÃµÄ¾ØÕó