第 13 页 共 40 页
199120 20 120 20 1 8 199126 6 105 5 1.2 9 200136 10 107.94 7.94 1.26 0 18、某地1980年的人口是120万人,81-90年间人口平均的自然增长率为1.2%,之后下降到1%,按此增长率到2003年人口会达到多少?如果要求到2000年人口控制在150万以内,则91后人口的增长速度应控制在什么范围内?
1013
解:2003年的人口数=120(1+1.2%)(1+1%)=153.87万人
如果将2000年的人口控制在150万以内,则91后人口的增长速度设为x%
1010
120(1+1.2%)(1+x%)=150x%=1.044%
即人口的增长速度应控制在千分之十点四四。
20、某企业历年年初资产总值资料如下(单位:万元) 年份 1995 1996 1997 1998 1999 2000 2001 年初总资产 100 125 140 165 190 220 260 要求:(1)计算1996-2000年期间的平均资产额 (2)该企业1996-2000年的年初总资产的平均增长速度 解:(1)计算一段时期内的平均资产额,属于序时平均数,由于资产是时点数,资料登记的间隔也相等,故用首尾折半法计算,注意这里的“首”是96年初(即125),“尾”应该指2000年末(即将2001年初的260)。所以1996-2000年的平均资产额=(125/2+140+165+190+220+260/2)/5=181.5万元
5(2)平均增长速度=平均发展速度-1=
220100=17%
22、某企业历年产值资料如下(单位:万元) 年份 1995 1996 1997 1998 1999 2000 2001 产值(万元) 10 12 15 18 20 24 28 要求(1)分别用最小平方法的普通法和简捷法配合直线方程,并预测该地区2003年这种产品可能达到的产量。 (2)比较两种方法得出的结果有何异同 解:设直线方程为y=a+ Bt (1)最小二乘法普通法计算表 2年份 产值y t ty t 1995 10 1 10 1 1996 12 2 24 4 1997 15 3 45 9 1998 18 4 72 16 1999 20 5 100 25 2000 24 6 144 36 2001 28 7 196 49 ∑ 127 28 591 140 2a=y- Bt=6.30 B=(7×591-28×127)÷(7×140-28)=2.96 则趋势方程为:y=6.3+2.96t
预测2003年产量=6.3+2.96×9=32.94(万元) (2)简捷法计算表: 2年份 产值y t ty t 1995 10 -3 -30 9 1996 12 -2 -24 4 1997 15 -1 -15 1 1998 18 0 0 0 1999 20 1 20 1 2000 24 2 48 4 2001 28 3 84 9 ∑ 127 0 83 28 a=Σy/n=127/7=18.14 B=Σty/Σt=83/28=2.96 则趋势方程为:y=18.14+2.96t
预测2003年产量=18.14+2.96×5=32.94(万元)
由于取的t值不同,用两种方法得出的趋势方程是不同的,但它们的趋势值是完全一致的,所以预测的结果也相同。 24、某种商品各年销售的分月资料如下:单位(万元) 月份\\年份 2000年 2001年 2002年 1 0.8 1.7 2.4 2 0.7 1.56 2.06 3 0.6 1.4 1.96 2
第 14 页 共 40 页 4 0.52 1.26 1.7 5 0.54 0.9 1.9 6 0.64 1.38 2.1 7 1.1 2.16 3.7 8 1.42 3.26 4.26 9 1.54 3.5 4.7 10 1.36 2.64 4.16 11 0.84 1.9 2.9 12 0.76 1.8 2.54 用“按月平均法”测定该种商品销售量的