Ö¸ÕëʽÒDZí×Ô¶¯¶ÁÊýʶ±ðϵͳÉè¼Æ - ͼÎÄ

Ö¸ÕëʽÒDZí×Ô¶¯¶ÁÊýϵͳÉè¼Æ

ÕªÒª

Ëæ×Åģʽʶ±ð¼¼Êõ¡¢¼ÆËã»ú¼¼ÊõµÈ¶àÖÖ¼¼ÊõµÄ²»¶ÏÍêÉƺͷ¢Õ¹£¬»úÆ÷ÊÓ¾õ»ñµÃÁ˾޴óµÄ½ø²½Óë·¢Õ¹¡£Ä¿Ç°ÔÚÐí¶àÆóÒµÖУ¬´æÔÚ×Å´óÁ¿µÄÒÇ±í£¬ÒDZíµÄ¶ÁÊý¶¼Òª¿¿ÈËÀ´Íê³É£¬¹¤×÷Á¿ºÜ´ó¶øÇÒÎó²îÂÊÏà¶ÔÀ´Ëµ±È½Ï¸ß£¬»ùÓÚÕâ¸öÔ­Òò£¬Éè¼ÆÁËÒ»¸ö¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦Àíϵͳ¡£Ê×ÏÈͨ¹ýÉãÏñÍ·²É¼¯ÒDZíͼÏñ£¬Í¨¹ý´«Êä×°ÖÃÒÔÎÞÏߵķ½Ê½°ÑͼÏñ´«Êäµ½µçÄÔÉÏ£¬È»ºóÔÚµçÄÔÉÏͨ¹ýmatlab³ÌÐòÉè¼Æ£¬´¦ÀíͼÏñ£¬¶ÁÈ¡ÒDZíµÄÊý¾Ý£¬È»ºóÓÃlabviewµ÷ÓÃmatlab³ÌÐò£¬²¢Éè¼ÆÒ»¸öÏÔʾ½çÃ棬ͨ¹ý½çÃæ¿ÉÒÔ¿´µ½ÊµÊ±µÄÊý¾ÝÓëÒDZíͼÏñÒÔ¼°ÔÚÒ»¶Îʱ¼äÄÚÊý¾ÝµÄ±ä»¯Çé¿ö¡£×îºóͨ¹ýlabview·ÃÎÊaccessÊý¾Ý¿â£¬½«¶ÁÈ¡µÄÊý¾Ý´«ÈëÊý¾Ý¿âÖУ¬±ãÓÚ±»µ÷Óã¬×îÖÕʵÏÖ¼ì²âÊý¾ÝµÄÊý×Ö»¯´¦Àí¡£

¹Ø¼ü´Ê£º»úÆ÷ÊÓ¾õ ͼÏñ´¦Àí Matlab Labview

Online testing data of industrial production line

digital processing system design

Abstract

With the development of computer technology and pattern recognition technology,machine vision technology makes a great progress and develop- ment.At present,there are a lot of instrument in many enterprises.in- strument reading work need people to complete.So there are a lot of work to do and efficiency is very low,as the same time,error rate is quite high.For this reason,there design a online testing data of industrial production line digital processing system.First of all,there need to take

Picture by camera.next,through transmission device in wireless way to transmit the image to a computer. Then by matlab programming on the compu- ter,data processing images, read the meter.And then call matlab by labview and design a display interface.Through the interface can see the real-time data.At last,through labview access access database,and take the data into database.Finally,realize the testing data of the digital processing.

Keywords£º Machine vision image processing Matlab Labview

Ŀ ¼

1.Ç°ÑÔ............................................................. 1

1.1¿ÎÌâ±³¾°..................................................... 1 1.2¿ÎÌâÑо¿ÏÖ×´................................................. 1 1.3Éè¼ÆµÄÄ¿µÄÓëÒâÒå............................................. 2 1.4Éè¼ÆÐèÒª½â¾öµÄÎÊÌâ........................................... 3

2. ¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦Àíϵͳ×ÜÌå·½°¸Éè¼Æ ........ 4

2.1Éè¼Æ·½°¸..................................................... 4 2.2¿ÉÐÐÐÔ·ÖÎö................................................... 4

3. ¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ×ÛÊö ............. 5

3.1ͼÏñ²É¼¯Óë´«Êä×°ÖÃÉè¼Æ....................................... 5

3.1.1ͼÏñ²É¼¯ ............................................... 5 3.1.2ͼÏñ´«Êäϵͳ ........................................... 5 3.1.3ͼÏñ²É¼¯Óë´«ÊäϵͳµÄÉè¼Æ ............................... 8 3.2ͼÏñ´¦ÀíÓëÒDZíÊý¾ÝµÄ¶ÁÈ¡..................................... 9

3.2.1ͼÏñÔ¤´¦Àí ............................................ 10

3.2.1.1ͼÏñÂ˲¨È¥Ôë..................................... 10 3.2.1.2ͼÏñÔöÇ¿......................................... 12 3.2.1.3¶þÖµ»¯´¦Àí....................................... 13 3.2.1.4±ßÔµ¼ì²âÓëͼÏñ·Ö¸î............................... 16 3.2.2Ö¸Õëʶ±ð .............................................. 17 3.2.3¶ÁÊýʶ±ð .............................................. 18 3.3Êý¾ÝÏÔʾ½çÃæµÄÉè¼Æ.......................................... 19

3.3.1Êý¾ÝÏÔʾ½çÃæµÄÇ°Ãæ°å .................................. 19 3.3.2Êý¾ÝÏÔʾ½çÃæµÄ³ÌÐò¿òͼ ................................ 21 3.4Êý¾Ý¿âµÄ½¨Á¢................................................ 21

4. ½áÂÛ .......................................................... 24 ÖÂл .............................................................. 25 ¸½Â¼Ò» matlabͼÏñ´¦Àí³ÌÐò ..................................... 25 ¸½Â¼¶þ labview³ÌÐò¿òͼ ........................................ 35

²Î¿¼ÎÄÏ× ......................................................... 36

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

1.Ç°ÑÔ

1.1¿ÎÌâ±³¾°

½üÄêÀ´£¬Ëæ×Å¿Æѧ¼¼ÊõµÄ½ø²½£¬Ðí¶àÐÂÐ˵ļ¼Êõ²»¶ÏµÄ²úÉúÓë·¢Õ¹£¬»úÆ÷ÊÓ¾õ¼¼ÊõÒ²Ëæ×ÅͼÏñ´¦ÀíµÈ¼¼ÊõµÄ·¢Õ¹¶øÖð½¥²úÉú£¬¶øÇÒ·¢Õ¹ºÜ¿ì¡£½üЩÄêÀ´£¬ÊÀ½ç·¶Î§ÄÚÓ¿ÏÖÁËÐí¶àµÄרÃÅ´ÓÊ»úÆ÷ÊÓ¾õ¼¼ÊõµÄ¹«Ë¾£¬ÓÐÐí¶àµÄ¹«Ë¾µÃµ½Á˺ܺõÄÀûÈó¡£Ïֽ׶Σ¬¹úÄڵĻúÆ÷ÊÓ¾õ¼¼ÊõËäÈ»¸ÕÆð²½²»³¤µÄʱ¼ä£¬µ«ÊÇ£¬Ò²Óм¸¼Ò¹«Ë¾ÔÚÕâ·½ÃæÈ¡µÃÁ˲»´íµÄ³É¼¨£¬²¢ÇÒ·¢Õ¹µÄËÙ¶ÈÒ²ºÜ¿ì¡£ËùνµÄ»úÆ÷ÊÓ¾õÊÇÒÔͨ¹ý´¦ÀíͼÏñ´ïµ½ÀàËÆÓÚÈËÑÛµÄÊÓ¾õµÄЧ¹û£¬Ìá¸ß¹¤×÷ЧÂʼõÇáÈ˵Ť×÷¸ºµ££¬Îª×îÖÕÄ¿µÄ¡£Ïà±ÈÓÚÈËÀàµÄÊÓ¾õ£¬Ê×ÏÈ»úÆ÷ÊÓ¾õ²»»á³öÏÖÆ£ÀÍÏÖÏ󣬶øÇÒ»úÆ÷ÊÓ¾õʶ±ðµÄ¾«¶È¿ÉÒÔ±ÈÈËÑÛµÄʶ±ðµÄ¾«¶È»¹Òª¸ßһЩ¡£Ä¿Ç°£¬ºÜ¶àÁìÓòÖж¼³öÏÖÁË»úÆ÷ÊÓ¾õ¼¼ÊõµÄÓ°×Ó£¬ÕâÒ²ÌåÏÖ³öÁË»úÆ÷ÊÓ¾õ¼¼ÊõµÄÑо¿¼ÛÖµ¡£Ö÷ÒªÓ¦ÓõÄÁìÓòÓÐ:ҽѧÁìÓò¡¢¹¤Òµ¼ì²âÁìÓò¡¢¼à¿Ø¹ÜÀí¡¢º½ÌìÁìÓòµÈ¡£µ±»úÆ÷ÊÓ¾õ¼¼ÊõÓ¦ÓÃÓÚ¹¤Òµ¼ì²âÁìÓòʱ£¬¿ÉÒÔʵÏÖ¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝµÄ×Ô¶¯¶ÁÈ¡£¬Ìá¸ß¶ÁÊýµÄ׼ȷÐÔ£¬ÓÐЧ¼õÇáÈ˵ĸºµ££¬¼°Ê±×¼È·µÄ·¢ÏÖÎÊÌâ¡¢½â¾öÎÊÌâ¡£

½øÈë21ÊÀ¼Íºó£¬µç×ÓÀàµÄÒDZíÓ¦ÓõÄÔ½À´Ô½¶à£¬×¼È·¶È¸ü¸ßµÄÊý×ÖʽÒDZí´óÓÐÈ¡´ú´«Í³µÄÖ¸ÕëʽÒDZíµÄÇ÷ÊÆ¡£µ«ÊÇ£¬Êý×ÖʽµÄÒDZíÔÚijЩÇé¿öϲ»ÄÜʹÓ㬶Ի·¾³µÄÊÊÓ¦ÐԱȽϲ±ÈÈ磬ÔÚ¶ÁÊý¿ìËٱ仯µÄʱºò¾Í²»ÊʺÏʹÓÃÁË£¬¶øÇÒ£¬Ïà±ÈÓÚÖ¸ÕëʽÒDZíÀ´Ëµ£¬Êý×ÖÒDZí¼Û¸ñÏà¶Ô½Ï¸ß£¬´óÅúÁ¿µÄ¹ºÂò³É±¾»áÉÏÉýºÜ¶à¡£Ö¸ÕëʽÒDZíÔò¿ÉÒÔÊÊÓÃÓںܶàµÄ³¡ºÏ£¬»·¾³ÒòËضÔÆäÔ¼ÊøÏà¶ÔÀ´Ëµ²»´ó¡£³ý´ËÖ®Í⣬ָÕëʽÒÇ±í»¹ÓÐÐí¶àÆäËûµÄÓŵ㣬±ÈÈ磬¿¹¸ÉÈÅÐÔÇ¿£¬·À³¾£¬·ÀË®µÈ£¬Òò´ËÎÒÃǹú¼ÒµÄÐí¶àÐÐÒµÖУ¬ÓÈÆäÊÇÄÇЩÑϽûÒ×ȼÒ×±¬µÄ³¡ºÏ£¬±ÈÈçµçÁ¦¡¢Ê¯ÓÍ¡¢»¯¹¤µÈ£¬Ö¸ÕëʽÒDZíÈÔÈ»ÊÇÊ×Ñ¡£¬ÔÚ»·¾³¶ñÁӵij¡ºÏ£¬¸ù±¾ÎÞ·¨Ê¹ÓÃÊý×ÖʽµÄÒÇ±í¡£ÔÚÒ»°ãµÄ¹¤³§ÖУ¬Ö¸ÕëʽµÄÒDZíÊýÁ¿´ó¡¢ÖÖÀà¶à£¬ÕâЩÒDZíµÄ¶ÁÊýÊ®·ÖµÄÂé·³£¬¶øÇÒ¹¤×÷Á¿ºÜ´ó£¬¹¤×÷ЧÂʺܵ͡£´«Í³ÉÏÈËÃÇÊǼ춨ָÕëʽÒDZíµÄ·½·¨ÊÇÈ˹¤ÅжÁ£¬µ«ÊÇÕâÖÖÅб𷽷¨»áÊܵ½Ðí¶àÈËΪÒòËصĸÉÈÅ£¬±ÈÈçÈ˵Ĺ۲âÒDZí½Ç¶È¡¢Æ£ÀÍÇ¿¶ÈÒÔ¼°¹Û²âµÄ¾àÀ룬¾ßÓй¤×÷Ç¿¶È´ó£¬Îó²îÂÊ´óµÈȱµã£¬²»ÄÜʵÏÖÒDZí¶ÁÊýÓë¼ì²âµÄ×Ô¶¯»¯¡£Ã¿¸öÒÇ±í¶¼ÐèÒªÒÀ¿¿ÈËÀ´Ãé×¼£¬Ã¿¸öÒDZíµÄ²Ù×÷Ò²ÐèÒªÒÀ¿¿ÈËÀ´Íê³É£¬ÕâÖÖ·½Ê½µÄ¹¤×÷Á¿´ó£¬Ð§Âʵ͡£

ΪÁËËõ¶Ì¼ì²âµÄʱ¼ä£¬ÓÐЧ¼õÇṤ×÷ÈËÔ±¹¤×÷Ç¿¶È £¬Ìá¸ß¼ì²â¹¤×÷µÄ×Ô¶¯»¯Ë®Æ½£¬Éè¼Æ¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÊǺÜÓбØÒªµÄ¡£ÀûÓûúÆ÷ÊÓ¾õ¼¼Êõ£¬¿ÉÒÔʵÏÖÒDZíͼÏñµÄ²É¼¯¡¢Ê¶±ðÒÔ¼°ÒDZíÊý¾ÝµÄ¶ÁÈ¡£¬¶øÕû¸öÉè¼ÆµÄ¹Ø¼ü¾ÍÔÚÓÚÈçºÎÓÃͼÏñʶ±ðµÄ·½Ê½Ê¶±ðÒÇ±í£¬¶ÁÈ¡Êý¾Ý¡£

1.2¿ÎÌâÑо¿ÏÖ×´

¹¤ÒµÉú²úÏßÔÚÏß¼à²âÊý¾ÝµÄÊý×Ö»¯´¦ÀíϵͳµÄÉè¼ÆµÄºËÐÄÊÇʹÓÃͼÏñʶ±ð

1

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

µÄ·½·¨Ê¶±ðÒDZí,Ö¸ÕëʽÒDZíµÄ¶ÁÊýʶ±ðÑо¿Æð²½Ïà¶ÔÀ´Ëµ½ÏÍí£¬1994Ä꣬sablatnigµÈÈËÌá³öÁËÀûÓÃhough±ä»»À´¼ì²âÖ¸ÕëʽÒDZíµÄ¶ÁÊýµÄ·½·¨[1]¡£1995 Ä꣬º«¹úµÄ Kyong-Ho Kim µÈÈ˳ɹ¦µÄʵÏÖÁ˶ԺË×°ÖÃÊý×Ö±íµÄͼÏñ·Ö¸î£¬²ÉÓõķ½·¨ÊÇÇøÓò»®·ÖºÍãÐÖµ·¨£¬×îÖÕ²ÉȡһϵÁеĴëÊ©£¬½¨Á¢Ò»¸öÍêÈ«×Ô¶¯»¯ÒDZíʶ±ðϵͳ[2]¡£Correa AlegriaµÈÈËÍê³ÉÁËÀûÓûúÆ÷ÊÓ¾õ¼¼Êõ¶ÔÖ¸ÕëʽÒDZíµÄ¼ì¶¨£¬Õû¸ö¹ý³ÌΪ£¬Ê×ÏÈʹÓÃÉãÏñÍ·²É¼¯Í¼Ïñ£¬È»ºó²ÉÓüõÓ°·¨´¦ÀíͼÏñ£¬±£´æͼÏñ£¬È»ºóÀûÓûô·ò±ä»»¼ì²âÖ±Ïߣ¬Ê¶±ðÖ¸Õ룬²¢ÇÒ¶Á³öÖ¸ÕëµÄ½Ç¶ÈÈ»£¬×îºó£¬¸ù¾ÝÖ¸Õë½Ç¶Èͨ¹ý¼ÆË㣬µÃµ½Ö¸ÕëµÄ¶ÁÊý[3]¡£Ëï·ï½ÜµÈÈËÌá³öÒ»ÖÖеÄÌáÈ¡Ö¸ÕëµÄ·½·¨£¬ÕâÖÖз½·¨ÊʺϽϲî¹âÕÕÌõ¼þÏÂʹÓ㬴Ӷø½â¾öÁ˹âÕÕÌõ¼þ¶ÔÖ¸Õë·Ö¸îµÄÔ¼ÊøÎÊÌ⣬ȡµÃÁ˽ϺõÄʶ±ðЧ¹û[4]¡£ÀèÃ÷ºÍÍõºñÊàÉè¼ÆÁËÒ»¸ö·É»ú×ù²ÕÒDZí¶ÁÊýµÄʶ±ðϵͳ£¬Õâ¸öϵͳÊ×ÏȽøÐÐͼÏñ¶þÖµ»¯£¬Ö÷ÒªÔËÓõÄС²¨±ä»»À´ÌáÈ¡Ö¸Õë¼°¿Ì¶È£¬²¢Çҳɹ¦µÄÈ¥³ýÁ˹âÏßÒÔ¼°¸÷ÖÖÍⲿÔëÉù¶ÔÕû¸ö¶ÁÊýϵͳµÄÓ°Ï죬¼ì²â³öÖ¸ÕëºÍ¿Ì¶Èºó£¬ÕÒµ½ÒDZíÔ²ÐÄ£¬²âÁ¿³öÖ¸ÕëµÄ½Ç¶È£¬ÕÒµ½Ö¸Õë½Ç¶ÈÓë¶ÁÊýµÄ¹Øϵ£¬²¢³É¹¦¶ÁÈ¡Êý¾Ý£¬Õâ¸öϵͳµÄʶ±ð¾«¶ÈºÜ¸ß£¬ÍêÈ«¸ßÓÚÈËÑÛµÄʶ±ð£¬¶øÇҳɹ¦ÊµÏÖÁËÔÚÏß²âÊÔ[5]¡£ÖܺéºÍÖÓÃ÷»Û³É¹¦µÄʵÏÖÁËÖ¸ÕëʽµÄÒDZíµÄÊý¾ÝµÄ×Ô¶¯¶ÁÈ¡¡£ÕâÖÖ¶ÁÊý·½·¨Í»ÆÆÁ˾àÀëµÄÏÞÖÆ£¬¿ÉÒÔÔ¶¾àÀëµÄͨ¹ý¶ÁÈ¡µ½ÒDZíµÄ¶ÁÊ飬¶øÇÒ¶ÁÊý׼ȷ£¬ÑÓ³ÙÒ²ºÜС£¬¿ÉÒÔÔÚÏß²âÊÔ£¬Õû¸öϵͳµÄ°²×°Ò²ºÜ¼òµ¥£¬¶øÇҳɱ¾Ò²ºÜµÍ£¬¶ÔÓÚһЩΣÏÕ³¡ºÏµÄÒDZí¶ÁÊý¾ßÓÐÖØÒªµÄÏÖʵÒâÒå[6]¡£2007Ä꣬ÑîÏþÃôµÈÈËÉè¼ÆÁËÒ»ÖÖеÄʶ±ð·½·¨£¬ÕâÖÖ·½·¨µÄÔ­ÀíÓë³µÅÆʶ±ðµÄÔ¶Àë·Ç³£ÏàËÆÄ££¬ÊÇÒ»ÖÖ¸ß˹»ìºÏÄ£ÐÍʶ±ð·½·¨[7]¡£ºÎÖǽܵÈÈËÉè¼ÆÁËÒ»ÖÖеÄÒDZí¶ÁÊýµÄʶ±ð·½·¨£¬ÕâÖÖз½·¨ÌرðÊʺϾ«¶ÈºÜ¸ßµÄÖ¸ÕëÒÇ±í£¬Õâ¸ö·½·¨ÖÐÖ÷ÒªÔËÓÃÁË»ô·ò±ä»»ºÍÖÐÐÄͶӰ·ÖÎö·¨£¬ÕâÖÖ·½·¨¿ÉÒÔʵÏ̶ֿȵÄÈ«×Ô¶¯Ê¶±ð£¬¶øÇÒ»¹Ìá¸ßÁËʶ±ðµÄ¾«¶ÈºÍËÙ¶È[8]¡£ÄþÖ¾¸ÕµÈÌá³öÒ»ÖÖ¿ÉÓ¦ÓÃÓڸ߾«¶ÈÖ¸ÕëÒDZí¶ÁÊýµÄ·½·¨£¬¸Ã·½·¨µÄÔ­ÀíÊÇÀûÓü¹²¨À´ÌáÈ¡ÒDZíͼÏñÖеÄÖ±Ïߣ¬¿ÉʵÏÖ×Ô¶¯¸ú×ÙÅжÁ[9]¡£

1.3Éè¼ÆµÄÄ¿µÄÓëÒâÒå

¶ÔÓÚ´ó¶àÊýµÄÖ¸ÕëʽÒÇ±í£¬ÓÈÆäÊÇ׼ȷ¶È±È½Ï¸ßµÄÒDZíµÄ¼ìÑ飬ÈÔÈ»ÐèҪͨ¹ýÈËÀ´ÊµÏÖ£¬ÕâÆäÖмÐÔÓÁËÐí¶àµÄÈËΪÒòËØ£¬²»Í¬µÄÈ˶ÔÓÚͬһ¸öÒDZí¿ÉÄÜ»á¶Á³ö²»Í¬µÄÊý¾Ý£¬¶ÔÓÚ׼ȷ¶È±È½Ï¸ßµÄÒÇ±í£¬»áÓбȽϴóµÄÎó²îÂÊ£¬¶øÇÒÈË»á³öÏÖÊÓ¾õÆ£ÀÍ£¬Ôö¼ÓÁËÊýÖµ±»¶Á´íµÄ¿ÉÄÜÐÔ£¬Ôì³ÉÈËΪµÄÎó²î¡£ËùÒÔ£¬Éè¼ÆÒ»ÖÖÄÜ×Ô¶¯¶ÁÈ¡Ö¸ÕëʽÒDZí¶ÁÊýµÄϵͳ£¬¾Í¿ÉÒÔ´ó´ó¼õÉÙÈ˵Ť×÷Á¿ £¬½µµÍ¹¤×÷µÄÇ¿¶È£¬Ìá¸ß¶ÁÊýµÄ׼ȷÐÔ£¬Ìá¸ß¹¤×÷ЧÂÊ¡£¹¤ÒµÉ豸ÄܺIJÎÊýÖ¸±êÌåϵ½¨Á¢ºó£¬Í¨¹ý¼ÆËã»ú¾Í¿ÉÒÔÇå³þµÄÁ˽⵽¸÷É豸µÄÄܺÄÇé¿öÒÔ¼°¹¤×÷״̬¼°Ê±×¼È·µÄ·¢ÏÖÎÊÌ⣬ÕâÑù¿ÉÒÔ¼õÉÙÄÜÔ´µÄÏûºÄ£¬ÓÅ»¯ÄÜÔ´½á¹¹£¬Ìá¸ßÄÜÔ´ÀûÓÃÂÊ£¬Ìá¸ßÉú²úЧÂÊ£¬¾ßÓÐÁ¼ºÃµÄ¾­¼ÃЧÒæºÍÉç»áЧÒæ¡£

2

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

1.4Éè¼ÆÐèÒª½â¾öµÄÎÊÌâ

¢Ù¶Ô×é³É¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳµÄ¸÷ÖÖÈíÓ²¼þ½øÐÐ×ÛºÏÉè¼Æ£¬Ó²¼þ²¿·Ö°üÀ¨ÉãÏñÍ·¡¢Í¼Ïñ´«ÊäÉ豸¡¢Í¼Ïñ½ÓÊÜÉ豸µÄÑ¡Ôñ;Èí¼þ²¿·Ö°üÀ¨¶Ô½ÓÊÕµ½µÄͼÏñ½øÐд¦ÀíµÄÏà¹Ø³ÌÐò£¬¶ÁÊýÏÔʾ½çÃæµÄÏà¹Ø³ÌÐò¡£

¢ÚÑо¿×¼È·¶ÁÈ¡ÒDZíÊý¾ÝµÄ·½·¨£º»ñµÃ½Ï¸ßÖÊÁ¿±íÅÌͼÏñ£¬ÓÐЧµÄ°ÑÖ¸Õë¼ì²â³öÀ´£¬Ìá¸ß¶ÁÊýµÄ׼ȷÐÔ¡£

¢Û.Êý¾ÝÏÔʾ½çÃæµÄÉè¼Æ£ºÄܹ»¿´µ½´Ëʱ´Ë¿ÌµÄÒDZíͼÏñÒÔ¼°¶ÔÓ¦µÄ±íÅ̶ÁÊý£¬Äܹ»¿´³öÒDZíµÄ¶ÁÊýÔÚÒ»¶Îʱ¼äÄڵı仯Çé¿ö¡£

3

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

2.¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦Àíϵͳ×ÜÌå·½°¸Éè¼Æ

2.1Éè¼Æ·½°¸

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÖ÷ÒªÓÉͼÏñ²É¼¯×°Öá¢Í¼Ïñ·¢ÉäÓë½ÓÊÜ×°Öá¢Í¼Ïñ´¦Àí²¿·ÖÒÔ¼°¿Í»§¶ËµÈ²¿·Ö×é³É¡£Éè¼Æ·½°¸ÈçÏÂËùʾ£º

Ä¿±êÒDZí ͼÏñ²É¼¯ ·¢ÉäÆ÷ ½ÓÊÕÆ÷ ¼ÆËã»ú

ͼÏñÂ˲¨È¥Ôë ͼÏñÔöÇ¿ ͼÏñ¶þÖµ»¯

Êý¾Ý¿â ¿Í»§¶Ë ±ßÔµ¼ì²â ͼÏñ´¦Àí ͼÏñ·Ö¸î Ö¸Õëʶ±ð ¶ÁÊýʶ±ð ͼ2-1 ×ÜÌå·½°¸

ͼÏñ·¢ÉäÓë½ÓÊÕ×°ÖòÉÓõÄÊÇÎÞÏßÓ°Òô·¢ÉäÆ÷£¬Í¼Ïñ´¦Àí²¿·ÖÊÇÓÉmatlabÀ´Íê³ÉµÄ£¬¶ø¿Í»§¶ËÔòÊÇÓÉlabviewÀ´Éè¼ÆµÄ¡£

2.2¿ÉÐÐÐÔ·ÖÎö

ͨ¹ýÉãÏñÍ·¿ÉÒԲɼ¯µ½ÇåÎúµÄͼÏñ£¬ÎÞÏßÓ°Òô´«ÊäÆ÷¿ÉʵÏÖͼÏñµÄÔ¶¾àÀë´«Ê䣬ÓÃmatlab³ÌÐò¿ÉÒÔ´¦ÀíͼÏñ£¬¶ÁÈ¡Êý¾Ý£¬labviewÊÇÒ»ÖÖ³ÌÐò¿ª·¢»·¾³,¿ÉÒÔʵÏÖÏÔʾ½çÃæµÄ´î½¨£¬ËùÒÔ£¬¸Ã·½°¸¿ÉÐС£

4

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

3.¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ×ÛÊö

3.1ͼÏñ²É¼¯Óë´«Êä×°ÖÃÉè¼Æ 3.1.1ͼÏñ²É¼¯

±íÅÌͼÏñµÄ²É¼¯Ñ¡ÔñµÄÊÇ̽ͷÉãÏñÍ·£¬¸ÃÉãÏñÍ·µÄ²ÎÊýÈçÏÂͼËùʾ£¬¸ÃÉãÏñÍ·ÓµÓÐÁù¿ÅÖ±¾¶5mmµÄºìÍâµÆ£¬¿ÉÒÔʵÏÖÒ¹ÅĵŦÄÜ£¬ÊÓƵÏßÑ¡ÔñͭоͭÍøµÄÈ«Í­ÊÓƵÏߣ¬±£Ö¤´«ÊäͼÏñ²»ÊܸÉÈÅ¡£

ͼ3-1 ÉãÏñÍ·²ÎÊý

3.1.2ͼÏñ´«Êäϵͳ

ͼÏñ´«ÊäÑ¡È¡µÄÊÇÎÞÏßÓ°Òô´«ÊäÆ÷£¬ÎÞÏßÓ°Òô´«ÊäÆ÷ÊÇÒ»ÖÖ¿ÉÒÔ°ÑͼÏñºÍÉùÒôÎÞÏß´«Êäµ½µçÄÔÉϵÄÎÞÏßÉ豸£¬¸Ã×°ÖÃÈçÏÂͼËùʾ¡£

5

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ͼ3-2 ÎÞÏßÓ°Òô´«ÊäÆ÷

ÎÞÏßÓ°Òô´«ÊäÆ÷¹²ÓÐÁù¸ö²¿·Ö£º·¢Éä»ú¡¢½ÓÊÜ»ú¡¢È«ÏòÌìÏß¡¢ÒôÊÓƵÏß¡¢12V2AµçÔ´ÒÔ¼°12V1AµçÔ´¡£±í3-1ÊÇ·¢Éä»úµÄ¼¼Êõ²ÎÊý,±í3-2Ϊ½ÓÊÕ»úµÄ²ÎÊý¡£

±í3-1 ·¢Éä»ú²ÎÊý

·¢ÉäƵÂÊ ¿ÉÓÃƵµÀ ¹¤×÷ƵÂÊ ÆµÂʵ÷ÖÆ·½Ê½ ÊÓƵÖÆʽ ÒôƵÊäÈë×迹 ÊÓƵÊäÈë×迹 ÊÓƵÊäÈëµçƽ ¹¤×÷µçѹ ¹¤×÷µçÁ÷ ¹¤×÷ÎÂ¶È ¹¤×÷ʪ¶È

3W 8¡ªCH 2370MHz-2510MHz FM/FSK PAL/NTSC 1K? 75? 1Vp_p 12V 550m-600mA -20¡ãC-120¡ãC 85%RH 6

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

±í3-2 ½ÓÊÕ»ú²ÎÊý

½ÓÊÕÌìÏß ¿ÉÓÃƵµÀ ¹¤×÷ƵÂÊ ÆµÂʵ÷ÖÆ·½Ê½ ½ÓÊÜÁéÃô¶È ÒôƵÊäÈë×迹 ÊÓƵÊäÈë×迹 ÊÓƵÊäÈëµçƽ ¹¤×÷µçѹ ¹¤×÷µçÁ÷ ¹¤×÷ÎÂ¶È ¹¤×÷ʪ¶È

ÎÞÏßÓ°Òô´«ÊäÆ÷µÄÌصãÈçÏ£º

7DBiÈ«ÏòÌìÏß 8¡ªCH 2370MHz-2510MHz FM/FSK -90dbm 1K? 75? 1Vp_p 12V 150mA-200mA -20¡ãC-120¡ãC 85%RH ¢Ù¾ßÓÐ΢²¨¿¹¸ÉÈŹ¦ÄܱȽϺã»

¢Ú´«ÊäºÍ½ÓÊܵÄÆ·Öʺ㬽ÓÊÕµ½µÄͼÏñÇåÎúÎȶ¨£» ¢Û¶àÖÖƵÂʶ¨ÖÆ£¬ÊÊÓ¦²»Í¬µÄµç´Å»·¾³£» ¢Ü¿ÉÒÔÔÚͬһµØ·½Ê¹ÓðËÌ×£¬ÐźŲ»»áÏ໥¸ÉÈÅ

¢Ý¿ÉÒÔ´«Ë͵ÄÐźŰüÀ¨DVD¡¢VCD¡¢CD¡¢µçÊÓ¡¢Â¼ÏñµÈµÈ£» ¢Þ¾ßÓй㷺µÄÓ¦Ó÷¶Î§£» ¢ß´«Êä¾àÀëÔ¶£» ¢à¾­¼Ãʵ»Ý£»

¢áά»¤¼òµ¥·½±ã£¬¿ÉÅäºÏÒƶ¯µçÔ´¹©µç¡£

¸Ã´«ÊäÆ÷µÄ°²×°·½·¨Îª£º

¢Ù°Ñ·¢ÉäÆ÷£¨2A£©ºÍµçÔ´ÊÊÅäÆ÷Á¬½ÓÆðÀ´½«£¬È»ºóͨµç£¬Èç¹ûºìµÆÁÁÁË£¬Ôò˵Ã÷·¢ÉäÆ÷ͨµç³É¹¦¡£

¢Ú½«ÁíÒ»µçÔ´ÊÊÅäÆ÷½ÓÓÚ½ÓÊÕÆ÷ÊäÈë¶Ë£¨1A£©£¬½ÓÉϵçÔ´£¬ºìµÆÁÁ£¬ÔòÖ¤Ã÷½ÓÊÕ»úͨµç³É¹¦¡£

¢Û°ÑÉãÏñÍ·ºÍ·¢ÉäÆ÷ÓÃÒô/ÊÓƵÏßÁ¬½ÓÆðÀ´£¬½ÓÊÕÆ÷Á¬ÔÚÏÔʾÆ÷ÉÏ£¬°Ñ·¢ÉäÆ÷ºÍ½ÓÊÕÆ÷µÄƵµÀÑ¡Ôñ¿ª¹Øµ÷µ½Í¬Ò»Î»Öã¬Í¨¹ýÏÔʾÆ÷¿ÉÒÔ¿´µ½ÉãÏñÍ·´«À´µÄ»­

7

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

Ã棬Íê³É°²×°¡£

ͼ3-3 ´«ÊäÆ÷°²×°Ê¾Òâͼ

ÊÓƵ²É¼¯¿¨Ñ¡ÓõÄÊÇ4·USBÊÓƵ²É¼¯¿¨£¬ÈçÏÂͼËùʾ£¬¸ÃÊÓƵ²É¼¯¿¨¾ßÓÐÒÔϹ¦ÄÜ£º

¢Ù¸Ã²É¼¯¿¨´øÓÐ4·ÊÓƵ£¬4·ÒôƵ£¬Â¼ÏñD1£¬»Ø·ÅD1£» ¢ÚÖ§³ÖµçÄÔ²Ù×÷ϵͳ£¬XPϵͳ£¬Win7ϵͳ£» ¢ÛÖ§³ÖÍøÂçÔ¶³Ì¼à¿Ø£¬×Ô´ø¶¯Ì¬ÓòÃû£¬ÉèÖüòµ¥£» ¢Ü¿ÉÒÔÖ§³Ö¶àÖÖ¼Ïñģʽ£¬ÈçÊÖ¶¯Â¼Ïñ£¬¶¨Ê±Â¼ÏñµÈ£»

¢Ýÿ·¿Éµ¥¶ÀÉèÖù¤×÷ʱ¼ä±í£¬Ö§³Ö¿É±à³Ì¶¨Ê±Â¼Ïñ£¬Ñ­»·Â¼Ïñ£» ¢ÞÖ§³Ö»­Ã沶׽¡¢»­Ãæ±£´æÒÔ¼°»­Ã汸·Ý¹¦ÄÜ£» ¢ßÖ§³ÖÔ¶³Ì»Ø·Å¹¦ÄÜ¡£

ͼ3-4 ÊÓƵ²É¼¯¿¨

3.1.3ͼÏñ²É¼¯Óë´«ÊäϵͳµÄÉè¼Æ

ͼÏñ²É¼¯Óë´«ÊäϵͳµÄÉè¼ÆÓÐÁ½ÖÖ·½°¸£¬ÈçÏÂͼËùʾ¡£

·½°¸Ò»£ºÉãÏñÍ·+µçÔ´+Ö§¼Ü+BNC½ÓÍ·+ÎÞÏß½ÓÊÕÆ÷+USB²É¼¯¿¨+µçÄÔ+ÏÔʾÆ÷

·½°¸¶þ£ºÉãÏñÍ·+µçÔ´+Ö§¼Ü+BNG½ÓÍ·+ÎÞÏß½ÓÊÕÆ÷+USB²É¼¯¿¨+Ó²Å̼Ïñ

8

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

»ú+Ó²ÅÌ+ÏÔʾÆ÷

ÔÚµçÄÔÉϲÙ×÷¸ü¼ÓÁé»î·½±ã£¬¶øÇÒͼÏñ´¦ÀíÒ²ÊÇÔÚµçÄÔÉϽøÐеģ¬ËùÒÔ£¬Ñ¡Ôñ·½°¸Ò»¡£

ͼ3-5 ´«ÊäϵͳÉè¼ÆʾÒâͼ

¾­¹ýÔÚ¹¤³§µÄʵµØ²âÊÔ£¬¸ÃͼÏñ²É¼¯Óë´«Êäϵͳ¿ÉÒÔʵÏÖÎÞÏß´«ÊäµÄ¹¦ÄÜ£¬²¢ÇÒ¾ßÓÐÒ»¶¨µÄ¿¹¸ÉÈÅÐÔ£¬ÏÂͼËùʾµÄͼƬÊÇÔÚ¹¤³§ÖоàÀëÒDZí´óÔ¼100Ã×Ô¶µÄÂ¥ÉÏËù½ÓÊÕµ½µÄͼƬ¡£

ͼ3-6 ¹¤³§ÊµµØ²âÊÔ½ÓÊÕ»­Ãæ

3.2ͼÏñ´¦ÀíÓëÒDZíÊý¾ÝµÄ¶ÁÈ¡

9

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

3.2.1ͼÏñÔ¤´¦Àí

ÔÚͼÏñ²É¼¯µÄ¹ý³ÌÖУ¬»áÊܵ½Ðí¶àµÄ¸ÉÈÅ£¬°üÀ¨×ÔÉíµÄºÍÍâ½çµÄ£¬ÀýÈ磬Íâ

½ç¹âÕÕÌõ¼þµÄÓ°Ï죬ÉãÏñÍ·ÏñËصĸߵͣ¬ÒDZí±íÅ̵ÄÇå½à³Ì¶ÈÒÔ¼°¸÷ÖÖÕñ¶¯¼°ÔëÉùµÄ¸ÉÈÅ¡£Êܵ½Öî¶àµÄ¸ÉÈźóµÃµ½µÄÕÕƬ¿ÉÄÜ»áÊÇÄ£ºýµÄ£¬¿ÉÄÜÎÞ·¨»ñÈ¡ÎÒÃÇÐèÒªµÄÐÅÏ¢£¬ÒªÏëµÃµ½ÓÐÓõÄÐÅÏ¢¾Í±ØÐëÏë°ì·¨È¥µôÕâЩ¸ÉÈÅ¡£ÎÒÃÇͨ¹ýÉãÏñÍ·µÄµ½µÄͼÏñ¶¼ÊDzÊÉ«µÄ£¬ÀïÃæÔ̺¬ÁË´óÁ¿µÄÐÅÏ¢£¬´¦ÀíÆðÀ´Ï൱·±Ëö£¬¶øÇÒ¼ÆËãÒ²·Ç³£¸´ÔÓ£¬ÈÝÒ׳öÏÖ´íÎó£¬ËùÒÔΪÁË´¦Àí¼òµ¥£¬±ØÐëÒª°Ñ²ÊɫͼƬת»¯ÎªÔ̺¬ÐÅÏ¢±È½ÏÉٵĻҶÈͼƬ¡£ÕâЩ¶¼ÊÇҪͨ¹ýͼÏñÔ¤´¦ÀíÀ´ÊµÏÖ£¬Í¼ÏñÔ¤´¦ÀíµÄÄ¿µÄÊÇÈ¥³ýͼÏñÉϵÄÔëÉù£¬¼õÉÙͼÏñµÄÐÅÏ¢£¬¼ò»¯ÔËË㣬ΪͼÏñ´¦Àí´òºÃ»ù´¡¡£Í¼ÏñÔ¤´¦Àí°üÀ¨£ºÍ¼ÏñÂ˲¨È¥Ô룬ͼÏñÔöÇ¿£¬Í¼Ïñ¶þÖµ»¯£¬±ßÔµ¼ì²âÓëͼÏñ¼ì²â¡£

3.2.1.1ͼÏñÂ˲¨È¥Ôë

ͼÏñÔڲɼ¯¡¢»ñÈ¡ºÍ´«ÊäµÄ¹ý³ÌÖУ¬¼¸ºõËùÓеÄͼÏñ¶¼»áÊÕµ½²»Í¬³Ì¶ÈµÄÔë

ÉùÎÛȾ£¬ÕâЩÔëÉùÓеÄÊǿɼûµÄ£¬ÓеÄÊDz»¿É¼ûµÄ£¬ÓеÄÔëÉùÎÛȾÔÚͼÏñÉÏÌåÏֵĺÜÃ÷ÏÔ£¬ÓеÄÔòÊÇÄÑÒÔ²ì¾õµÄ¡£¶ÔÓÚ²»Í¬µÄµØµã£¬ÐÅÔë±ÈÊDz»Í¬µÄ£¬ÐÅÔë±ÈÔ½´ó£¬Í¼ÏñµÄÖÊÁ¿ÔòÔ½ºÃ£¬µ«µ±ÐÅÔë±ÈµÍÓÚÒ»¶¨µÄÊýֵʱ£¬ÔëÉù½«»á±ä³ÉÈËÑۿɼûµÄ¿ÅÁ£×´£¬Í¼Æ¬¾Í»á±äµÃÄ£ºýÆðÀ´£¬Í¼Æ¬ÖÊÁ¿Ò²»áÏàÓ¦µÄϽµ¡£¸üÖØÒªµÄÊÇ£¬ÔëÉùËù²úÉúµÄ¿ÅÁ£ÓпÉÄÜ»áÑÚ¸ÇÎÒÃÇÐèÒªµÄÐÅϢϸ½Ú£¬ÓÉÓÚÔÚ¹¤³§Öвɼ¯Í¼ÏñµÄ¹ý³ÌÖУ¬ÔëÉùÎÛȾÊDz»¿É±ÜÃâµÄ£¬¶øÇÒÔëÉùÎÛȾÌåÏÖÔÚÊÓ¾õÉÏÒ²ÊDZȽÏÃ÷ÏԵģ¬ËùÒÔ±ØÐëÒª¶ÔͼÏñ½øÐÐÂ˲¨È¥ÔëµÄ´¦Àí£¬ÒòΪÉãÏñÍ·Ëù²É¼¯µ½µÄÕÕƬÊDzÊÉ«µÄ£¬Êý¾ÝÁ¿ºÜ´ó£¬¼ÆË㸴ÔÓ£¬´¦ÀíÆðÀ´ÈÝÒ׳ö´í£¬¶øÑÕÉ«ÐÅÏ¢¶ÔÓÚ×îÖյĶÁÊýÊÇûÓÐÓ°ÏìµÄ£¬ËùÒÔ£¬ÎªÁ˼ò»¯ÔËË㣬ʹͼÏñµÄ´¦Àí±äµÃÏȶԼòµ¥£¬ÔÚÂ˲¨È¥Ôë֮ǰ£¬ÏÈÒª¶ÔͼÏñ½øÐлҶȻ¯´¦Àí£¬È»ºóÔÙ½øÐÐÂ˲¨£¬ÔÚ±¾Éè¼ÆÖвÉÓõÄÊÇÖÐÖµÂ˲¨£¬ÖÐÖµÂ˲¨[10]Æð³õÊÇÓÃÓÚһάÐźŵĴ¦Àí£¬ºóÀ´ºÜ¿ì±»Ó¦Óõ½¶þάͼÏñµÄ´¦ÀíÖ®ÖС£ËùνµÄÖÐÖµÂ˲¨£¬¼òµ¥µØ˵£¬¾ÍÊÇËùÓеÄÏñËØ°´ÕÕÊýÖµ´óСÅÅÁÐÆðÀ´£¬È»ºóÈ¡ÖмäÖµ×÷ΪÕû¸öͼÏñµÄ»Ò¶ÈÖµ¡£

ÖÐÖµÂ˲¨ÊÇÔںܶàµØ·½¶¼¿ÉÒÔ±»Óõ½£¬Ïà¶ÔÀ´Ëµ£¬Ô­ÀíÒ²±È½Ï¼òµ¥£¬ÊÇÒ»ÖÖ·ÇÏßÐÔµÄÂ˲¨£¬Ëü²ÉÓõÄÊÇÒ»¸ö°üº¬ÆæÊý¸öµãµÄ»¬¶¯´°ÃÅ£¬×îÖÕÕû¸ö´°¿ÚµÄ»Ò¶ÈÖµÊÇ´°¿ÚÖеĻҶÈÖµµÄÖмäÖµ¡£ËüµÄÔ­ÀíÈçÏ£¬¶ÔÓÚÒ»¸öһάµÄÐòÁÐ

f1,f2,???,fnÑ¡È¡µÄ»¬¶¯´°¿ÚµÄ³¤¶ÈΪm£¬¶ÔÕâ¸öһάµÄÐòÁнøÐÐÖÐÖµÂ˲¨£¬

´ÓÊäÈëµÄһάÐòÁÐÖ®Öа´ÕÕ˳ÐòÈ¡³ö

m

¸öÔªËØ£¬

fi?v???,fi?1,fi,fi?v,???,fi?v£¬ÆäÖУ¬i

´ú±í»¬¶¯´°¿ÚµÄÖÐÐÄλÖã¬

v=(m?1)/2£¬½«Õâm¸öÊý°´ÊýÖµÓÉ´óµ½Ð¡ÅÅÁÐÆðÀ´£¬ÕÒ³öÖмäµÄÊý×÷ΪÂ˲¨µÄ

10

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

Êä³öÊýÖµ£¬Êýѧ±í´ïʽΪ£º

gi?Med{fi?v,???,fi,???,fi?v},i?Z,v?(m?1)/2 (3-1)

ÉÏʽÖУ¬Med{???}±íʾµÄÊÇÈ¡ÐòÁеÄÖÐÖµ¡£ÀýÈ磬ÓÐÕâôһ¸öһάµÄÐòÁУû11£¬20£¬16£¬24£¬29£ý£¬´ÎÐòÁÐÓÉСµ½´óÅÅÁеĽá¹ûΪ£û11£¬16£¬20£¬24£¬29£ý£¬ÄÇô£¬ÖÐÖµÂ˲¨Êä³öµÄ½á¹ûΪ20¡£¼ÙÈç»Ò¶ÈÖµÊÇ29µÄÏñËØÊDZ»ÔëÉùÎÛȾµÄÏñËØ£¬ÄÇô£¬¾­¹ýÖÐÖµÂ˲¨ºó±»ÔëÉùÎÛȾµÄÏñËؽ«±»¹ý³ýµô¡£°´ÕÕÕâ¸öÔ­Àí£¬ÖÐÖµÂ˲¨Í¬Ñù¿ÉÒÔÊÊÓÃÓÚ¶þάµÄÐòÁУ¬ÔÚ¶Ô¶þάÐòÁÐ{fij}½øÐÐÖÐÖµÂ˲¨Ê±£¬Â˲¨µÄ»¬¶¯´°¿ÚÒ²½«ÊǶþάµÄ£¬°Ñ´°¿ÚÄÚµÄÏñËØ°´ÓÉСµ½´ó£¬»òÕßÓÉСµ½´ó½øÐÐÅÅÐò£¬Éú³ÉÊý¾ÝÐòÁÐ{xij}£¬¶þάÖÐÖµÂ˲¨µÄ½á¹ûÈçÏ£¨3-2£©Ëùʾ

Ò»°ãÇé¿öÏ£¬¶þάÖÐÖµÂ˲¨µÄЧ¹û¸ü¼ÓµÄÃ÷ÏÔ¡£²»Í¬µÄ»¬¶¯´°¿Ú¿ÉÒÔ²úÉú²»Í¬µÄЧ¹û£¬»¬¶¯´°¿ÚµÄÐÎ×´ÊǶàÖÖ¶àÑùµÄ£¬»¬¶¯´°¿ÚµÄÑ¡ÔñÓëËù´¦ÀíµÄͼÏñºÍËùÒª´ïµ½µÄÄ¿µÄÓйأ¬ÖÐÖµÂ˲¨ÊÇÒ»ÖÖ·ÇÏßÐÔµÄÂ˲¨£¬Éæ¼°µ½µÄ¼ÆËãÒ²±È½Ï¸´ÔÓ£¬¶ÔÓÚÖÐÖµÊÇ0µÄÕý̬·Ö²¼Ëæ»úÔëÉù£¬ÖÐÖµÂ˲¨µÄÊä³öÔëÉù·½²îΪ£º

2?med?1/(4mf2(m))?(?/2)?i2/(m??/2?1) (3-3)

_gi,j?Med{xij} (3-2)

ÉÏʽÖУº

?i2ÊÇÊäÈëµÄÔëÉù¹¦ÂÊ£»

mÊÇÖÐÖµÂ˲¨Æ÷µÄ´°¿Ú´óС£»

mÊÇÊäÈëÔëÉùµÄ¾ùÖµ£»

__ f(m) ÊÇÊäÈëÔëÉùµÄÃܶȺ¯Êý¡£ ÄÇô£¬¾ùÖµÂ˲¨µÄÊä³ö·½²îΪ£º

2?0??i2/m (3-4)

¶Ô±ÈÉÏÃæµÄµÄ¼¸¸ö¹«Ê½¿ÉÒÔ¿´³ö£¬¶ø¾ùÖµÂ˲¨µÄÊä³öºÍÊäÈëµÄ·Ö²¼ÊÇûÓйØϵµÄ£¬¶øÖÐÖµÂ˲¨µÄÊä³öµÄÊäÈëÔëÉùµÄÃܶȷֲ¼ÊÇÏà¹ØµÄ¡£ÖÐÖµÂ˲¨Óë¾ùÖµÂ˲¨¸÷ÓÐÌص㣬¾ùÖµÂ˲¨¶ÔÓÚËæ»úÔëÉùµÄÒÖÖÆÄÜÁ¦¸üÇ¿£¬¶øÖÐÖµÂ˲¨Ôò¸üÊÊÓÃÓÚÂö³å¸ÉÈÅ¡£Í¼3-7Ϊ¼ÓÈëÑÎÔëÉùµÄͼƬºÍ½øÐÐÖÐÖµÂ˲¨ ´¦ÀíÖ®ºóµÄͼƬ£¬¿ÉÒÔ¿´³ö£¬

11

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ÖÐÖµÂ˲¨µÄЧ¹û»¹ÊǺÜÃ÷ÏԵġ£ÖÐÖµÂ˲¨µÄÖ÷Òª³ÌÐòΪ£º

J= imread('1.jpg');

K = imnoise(J,'salt & pepper',0.02); imshow(J);figure;imshow(K); L =medfilt2(rgb2gray(K));

imshow(K), figure, imshow(L);

ͼ3-7 ¼ÓÈëÑÎÔëÉùµÄͼƬÓëÂ˲¨ºóµÄͼƬ 3.2.1.2ͼÏñÔöÇ¿

ͼÏñÔöÇ¿ÊÇÒÔ¸ÄÉÆͼÏñµÄÊÓ¾õЧ¹ûΪ¸ù±¾Ä¿µÄµÄ£¬Ôڲɼ¯Í¼ÏñµÄ¹ý³ÌÖУ¬ÌرðÊÇÔÚ¹¤³§ÖУ¬¹âÕÕÌõ¼þ¶ÔͼƬÖÊÁ¿µÄÓ°ÏìÊ®·ÖÃ÷ÏÔ£¬¶øÅÄÉãµÄ¹ý³ÌÖпÉÄÜ»á³öÏÖÆعâ¹ý¶È»òÕßÆعⲻ×ãµÄÏÖÏó£¬ÕâÑùµÃµ½µÄͼÏñ½«»áÊÇÄ£ºýµÄ£¬±íÅÌÉϵÄÖ¸Õë¿Ì¶ÈÇøÓòÓë±³¾°ÇøÓòµÄÇø·Ö²»ÊǺÜÃ÷ÏÔ£¬²»ÀûÓÚÒDZíͼÏñµÄʶ±ð¡£ÎªÁËʹ±íÅÌÉÏÖ¸Õë¿Ì¶ÈÇøÓòÓë±³¾°ÇøÓòµÄ½çÏÞ±äµÃÃ÷ÏÔ£¬ÐèÒª¶ÔͼÏñ½øÐпռäÓòµÄͼÏñÔöÇ¿¡£¿Õ¼äÓòµÄµÄͼÏñÔöÇ¿Ö÷ÒªÓÐÁ½ÖÖ·½Ê½£¬Ö±·½Í¼µÄ¾ùºâ»¯´¦ÀíºÍ»Ò¶È±ä»»£¬±¾Éè¼ÆÖвÉÓõÄÊǻҶȱ任¡£»Ò¶È±ä»»µÄ±ä»»º¯ÊýÓÐÈýÖÖ£¬°üÀ¨ÏßÐԱ任¡¢·ÇÏßÐԱ任ÒÔ¼°·Ö¶ÎÏßÐԱ任£¬£¬ÈýÖֱ任º¯Êý¸÷ÓÐÌص㣬Ӧ¸ù¾ÝͼÏñµÄÌصãÒѾ­Ó¦Óõij¡ºÏÑ¡ÔñÏàÓ¦µÄº¯Êý¡£±¾Éè¼ÆÖвÉÓõÄÊÇ·Ö¶ÎÏßÐԱ任·¨½øÐÐͼÏñ»Ò¶ÈµÄ¶Ô±È¶ÈÔöÇ¿¡£·Ö¶ÎÏßÐԱ任º¯ÊýÖÐ×î³£±»Óõ½µÄÊÇÈý¶ÎÏßÐԱ任£¬ÆäÊýѧ±í´ïʽÈçÏÂ: (c/a)f(i,j) 0?f(i,j)?a

[(i,j)?a]?c a?f(i,j)?b (3-5) g(i,j)? [(d?c)/(b?a)]f [(Mg?d)/(Mf?b)]f[(i,j)?b]?d b?f(i,j)?Mf ÉÏʽÖÐf(i,j)ÊÇԭͼÏñµÄ»Ò¶ÈÖµ£¬g(i,j)ÊDZ任ºóµÄͼÏñµÄ»Ò¶ÈÖµ£¬a,bÊÇÈ·¶¨µÄ·Ö¶ÎÇøÓòµÄãÐÖµ¡£Í¼3-8ΪÔöÇ¿ºóµÄͼƬ£¬Í¼ÏñÔöÇ¿µÄÖ÷Òª³ÌÐòΪ£º

j=imread('1.jpg');

12

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

x=RGB2gray(j); subplot(1,2,1); imshow(x);

title('ԭͼÏñ'); f=double(x); [m,n]=size(f);

h=fspecial('gaussian',[25,25],80); q=imfilter(f,h,'same'); s=log(f+0.03)-log(q+0.03); r=exp(s);

max_r=max(r(:))*0.27; min_r=min(r(:));

r=(r-min_r)/(max_r-min_r); index=find(r>1); r(index)=1; R=mat2gray(r); subplot(1,2,2); imshow(R);

title('´¦ÀíºóµÄͼÏñ'); G=im2bw(R,0.7); imshow(G); I=uint8(G);

bw=edge(I,'sobel'); imshow(bw);

ͼ3-8 ÔöÇ¿ºóµÄͼƬ 3.2.1.3¶þÖµ»¯´¦Àí

½øÐÐÍêͼÏñÔöÇ¿ºóµÄͼÏñÊǻҶÈͼÏñ£¬»Ò¶ÈͼÏñµÄÿ¸öÏñËض¼¿ÉÒÔÔÚ0-255Ö®¼äÈ¡Öµ£¬Ã¿¸öÏñËض¼¿ÉÒÔÓÐÈç´Ë¶àµÄÈ¡Öµ£¬ÕâÑùµÄͼÏñ¼ÆËãºÍ´¦ÀíÆðÀ´Ê®·ÖµÄÂé·³£¬¶øÇÒÈÝÒ׳ö´í£¬ËùÒÔ£¬¾ÍÒª¶ÔͼÏñ½øÐжþÖµ»¯´¦Àí£¬Ê¹Í¼ÏñµÄÿ¸öÏñËØÖ»

13

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ÄÜÈ¥0Óë1Á½¸öÖµ£¬¡°0¡±×÷ΪĿ±êÇøÓò£¬¡°1¡±×÷Ϊ±³¾°ÇøÓò£¬·´Ö®£¬Òà¿ÉÒÔ£¬ÕâÑù¼ÆË㽫±äµÃÏà¶Ô¼òµ¥£¬Ò²²»ÈÝÒ׳ö´í¡£ÓÃÀ´»®·Ö±³¾°ÇøÓòºÍÄ¿±êÇøÓòµÄÄǸö»Ò¶ÈÖµ¾Í³Æ×÷ΪãÐÖµ£¬´óÓÚãÐÖµµÄÏñËØֵȫ²¿ÉèΪ1£¬Ð¡ÓÚãÐÖµµÄÔòÈ«²¿ÉèΪ0.ͼÏñµÄ¶þÖµ»¯[11]´¦ÀíÊÇͼÏñ´¦ÀíÖÐ×î³£Óõļ¼Êõ£¬ÔÚͼÏñ´¦ÀíÖоßÓÐÖÁ¹ØÖØÒªµÄµØλ¡£Ö÷ÒªÓÐÈý¸öÔ­Òò£¬Ê×ÏÈ£¬ÔÚ²ÊɫͼÏñ»òÕ߻ҶÈͼÏñµÄ´¦Àí¹ý³ÌÖУ¬¶¼ÒªÏȽ«Í¼Ïñ½øÐжþÖµ»¯´¦Àí£¬È»ºóÔÙ½øÐиüÉî²ã´ÎµÄ¼ÆËã¡£Æä´Î£¬ÔÚÀíÂÛÉϺͷ½·¨ÉÏͼÏñ¶þÖµ»¯±È»Ò¶ÈͼÏñ´¦Àí¸ü¼Óϵͳ»¯£¬Ò²¸ü¼ÓÎȶ¨¡£ µÚÈý£¬µ±Í¼Ïñ´¦ÀíµÄ¶ÔÏóÊÇÎÄ×Ö»òÕßͼֽµÄʱºò£¬´Ó±¾ÖÊÉÏÀ´Ëµ£¬±³¾°ºÍͼÐÎÒ²ÊÇÒ»ÖÖ¶þÖµ»¯µÄͼÏñ¡£ÔÚͼÏñ¶þÖµ»¯µÄÔ­ÀíÈ磨3-6£©Ëùʾ

1£» µ±f(i,j)?tʱ

ft(i,j)? (3-6)

0£» µ±f(i,j)?tʱ

ͨ³£Çé¿öÏ£¬ÔÚ¶þÖµ»¯Í¼Ïñft(i,j)ÖУ¬ÊýÖµÊÇ0µÄ±íʾ±³¾°ÇøÓò£¬ÊýÖµÊÇ1µÄ´ú±íÄ¿±êÇøÓò¡£¶øãÐÖµtÔòÊÇÐèÒªÇó½âµÄ£¬Çó½âãÐÖµtµÄ·½·¨³ÆΪãÐֵѡÔñ£¬³£ÓõÄãÐֵѡÔñ·½·¨ÓÐÒÔϼ¸ÖÖ£º

¢ÙÅбð·ÖÎö·¨¡£ÓÃãÐÖµt½«Í¼ÏñµÄ»Ò¶ÈÖµÖ±·½Í¼ÖеĻҶÈÖµµÄ·Ö²¼·ÖΪÁ½×飬Çó³öÊÇÁ½×é·ÖÀë´ïµ½×îºÃµÄãÐÖµt£¬Õâ¾ÍÊÇÅбð·ÖÎö·¨¡£ÓÃÅбð·ÖÎö·¨È·¶¨ãÐÖµtµÄ·½·¨ÈçÏÂËùʾ£¬¼ÙÉèãÐÖµÊÇt£¬¸ø¶¨µÄͼÏñ¾ßÓÐL¼¶»Ò¶ÈÖµ(1,2,???,L)£¬°Ñ´óÓÚtµÄ»Ò¶ÈÖµµÄÏñËغÍСÓÚtµÄÏñËØ·Ö³ÉÁ½×飬ÉèΪ1×éºÍ2×飬Éèi×é

(i?1,2)£¬µÄÏñËØÊýΪ?i£¬Æ½¾ù»Ò¶ÈֵΪMi£¬·½²îΪ?2£¬È«ÌåÏñËصÄƽ¾ùֵΪMT£¬Ôò×éÄÚ·½²îΪ

22?????21122?? W?1??2 (3-7)

×é¼äµÄ·½²îΪ

?1(M1?MT)2??2(M2?MT)2 ??

?1??22B

?1?2(M1?M2)2? (3-8)

?1??22Èç¹ûÉèÈ«²¿ÏñËصĻҶÈÖµµÄ·½²îΪ?T£¬ÄÇô£¬ÔòÓÐ

14

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

222?T??W??B (3-9)

Òò´Ë¿ÉÒԵõ½Åбð±ÈΪ

22?B?B?222?W?T??B (3-10)

2ÓÉÓÚÈ«·½²î?TÊÇÒ»¸ö³£Êý£¬ÓëãÐֵûÓйØϵ£¬ÓÉ´Ë¿ÉÒԵõ½£¬Ö»ÐèÈÃ?B×î2´ó¾Í¿ÉʹÅбð±ÈÈ¡µÃ×î´óÖµ£¬ËùÒÔÖ»ÐèʹtµÄÖµ²»¶Ï±ä»¯²¢Çó³ö?B×î´óʱ¶ÔÓ¦

µÄtµÄÖµ¡£ ¢Úp-²ÎÊý·¨¡£ÈôÒª±»·ÖÀëµÄͼÏñµÄÃæ»ý´óÔ¼µÈÓÚS0£¬ÆäÓëÕû¸öͼÏñµÄÃæ»ýSÖ®±ÈΪp=S0/S¡£ÔÚÑ¡ÔñãÐֵʱ£¬ÒªÊ¹»Ò¶ÈÖ±·½Í¼ÖдóÓÚtµÄÏñËضÔÆäËûËùÓÐÏñËصıÈÖµÒàΪpΪ´Ë£¬Òò´Ë£¬ÒªÏëÇó³öãÐÖµ£¬Ö»ÐèÒªÔÚͼÏñµÄ»Ò¶ÈÖ±·½Í¼ÖУ¬´Ó»Ò¶ÈÖµ¸ßµÄÒ»±ß¿ªÊ¼¼ÆË㣬Çó³öÀÛ»ýÏà¶Ô¶ÁÊý·Ö²¼£¬µ±ÀÛ»ýÏà¶Ô¶ÁÊýµÄÖµ´ïµ½ÎªpʱµÄ»Ò¶ÈÖµ¾ÍÊÇËùÇóµÄãÐÖµ£¬ÕâÖÖ·½·¨Ò²¾­³£±»Óõ½¡£

¢Û״̬·¨¡£×´Ì¬·¨Ö»ÊÇÓÃÓÚ»Ò¶ÈÖ±·½Í¼³ÊÏÖË«·åÐÍ·Ö²¼µÄÌõ¼þÏ£¬Õâʱ£¬ãÐÖµt¾ÍÊÇÁ½¸ö·å¼äµÄµÍ¹ÈÉϵĻҶÈÖµ¡£ÔÚ¸´ÔÓµÄͼÏñºÍÊݵ½ºÜ¶à¸ÉÈŵÄͼÏñÖУ¬Ö±·½Í¼²»ÄܳÊÏÖÃ÷ÏÔµÄË«·åÐÍ£¬ËùÒÔ£¬×´Ì¬·¨ÓÐʱ²¢²»ÊÊÓᣠ¶þÖµ»¯ºóµÄͼÏñÈçͼ3-9Ëùʾ£¬Í¼Ïñ¶þÖµ»¯µÄÖ÷Òª³ÌÐòΪ£º

T=0.5*(double(min(I(:)))+double(max(I(:)))); done=false; while ~done g=I>=T;

Tnext=0.5*(mean(I(g))+mean(I(~g))); done=abs(T-Tnext)<0.5; T=Tnext; end J=I;

K=find(J>=T); J(K)=255; K=find(J

15

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ͼ3-9 ¶þÖµ»¯Í¼Æ¬ 3.2.1.4±ßÔµ¼ì²âÓëͼÏñ·Ö¸î

¶ÔÓÚͼÏñ´¦ÀíÀ´Ëµ£¬±ßÔµ¼ì²âÊDZØÐëµÄ¡£ÒòΪ´Ó±ßÔµµÄ¶¨ÒåÉϾͿÉÒÔ¿´³ö£¬±ßÔµÊÇͼÏñµÄÖØÒªµÄ»ù±¾ÌØÕ÷¡£±ßÔµÔ̺¬×ÅͼÏñµÄ·½Ïò¡¢½×Ô¾ÐÔÖÊÓëÐÎ×´ÖØÒªµÄÐÅÏ¢£¬¶øÕâЩÐÅϢʮ·ÖµÄÖØÒª£¬Ëü¿ÉÒÔÓ¦ÓÃÔÚÔÚͼÏñ·Ö¸î¡¢ÌØÕ÷ÌáÈ¡¡¢Í¼Ïñ·ÖÀࡢͼÏñÅä×¼ÒÔ¼°Í¼Ïñʶ±ðÖС£Í¼Ïñ±ßÔµ¿ÉÒÔ·ÖΪÁ½´óÀ࣬һÀàÊǽ×Ô¾×´±ßÔµ£¬ÁíÒ»ÀàÊÇÎݶ¥×´±ßÔµ£¬ÆäÖÐÁ½±ß»Ò¶ÈÖµÓÐÃ÷ÏԵı仯µÄÊǽ×Ô¾×´±ßÔµ;¶øÔڻҶȼõСºÍÔö¼ÓµÄ½»½ç´¦µÄÊÇÎݶ¥×´±ßÔµ¡£Ê×ÏÈͨ¹ýÀûÓñßÔµÔöÇ¿Ëã×Ó£¬À´Í»³öͼÏñÖоֱßÔµ£¬È»ºóÔÙ¶¨ÒåÏñËصġ°±ßԵǿ¶È¡±£¬×îºóͨ¹ýÉèÖÃãÐÖµÀ´ÌáÈ¡±ßÔµµã¼¯ÊDZßÔµ¼ì²âµÄ»ù±¾µÄ˼Ïë¡£±ßÔµ¼ì²â·½·¨ÓÐSobelËã×Ó·¨[12]¡¢ RobertËã×Ó·¨[13]¡¢ PreWlttËã×Ó·¨[14]¡¢LOGËã×Ó·¨¡¢CannyËã×Ó·¨¡¢ZerocrossËã×Ó·¨[15]ÒÔ¼°¶þֵͼÏñ±ßÔµ¼ì²â·¨µÈ¡£ÕâЩËã·¨¸÷ÓÐÌص㣬ÊÊÓõÄÌõ¼þÒ²²»Ò»Ñù¡£±¾Éè¼ÆÖвÉÓõÄÊÇSobelËã×Ó·¨¡£

ͼÏñ·Ö¸îÊǶÔͼÏñ½øÐд¦Àí¡¢·ÖÎöµÄÒ»Ïî»ù±¾ÄÚÈÝ£¬Í¨¹ýͼÏñ·Ö¸î¿ÉÒÔ·Ö¸î³öËùÐèÒªµÄ²¿·Ö½øÐзÖÎö¡£Í¼Ïñ·Ö¸îÊÇ´ÓͼÏñ´¦Àíµ½¶ÁÊýʶ±ðµÄÒ»¸öתÕ۵㣬ֻÓзָî³öͼÏñºó²ÅÄܽøÐÐÕæÕýÒâÒåÉϵÄͼÏñ·ÖÎöÓëͼÏñ¼ÆËã¡£Òò´Ë£¬¶ÔÓÚͼÏñ·ÖÎöÀ´ËµÊǷdz£ÖØÒªµÄ¡£Ä¿Ç°ÒѾ­ÓкܶàµÄͼÏñ·Ö¸îËã·¨£¬ÈçÃÅÏÞ·¨¡¢ÇøÓòÉú³¤·¨¡¢Æ¥Åä·¨¡¢·ÖÁÑ-ºÏ²¢·¨¡¢Ë®Ïß·¨¡¢±ßÔµ¼ì²â·¨¡¢Âí¶û¿É·òËæ»ú³¡Ä£ÐÍ·¨¡¢Ð¡²¨·ÖÎö·¨¡¢¶à³ß¶È·¨¡¢ÊýѧÐÎ̬·¨µÈ¡£ÕâЩËã·¨¶¼ÊÇÕë¶ÔÓÚÒ»ÀàͼÏñ£¬Ã»ÓÐÄÄÒ»ÖÖËã·¨Äܹ»ÊÊÓÃÓÚËùÓеÄͼÏñ£¬µ«ÊÇ¿ÉÒÔÀûÓÃÕâЩËã·¨µÄÔ­ÀíÒÔ¼°Ëã·¨ÖеÄһЩ˼Ïë´¦ÀíһЩÆäËûµÄͼÏñ·Ö¸îÎÊÌ⣬ÓÉÓÚÔÚÇ°ÃæÒѾ­Íê³ÉÁ˱ßÔµ¼ì²â£¬ËùÒÔÔÚ±¾Éè¼ÆÖвÉÓÃÁË»ùÓÚ±ßÔµ¼ì²âµÄͼÏñ·Ö¸î¡£Í¼3-10Ϊ±ßÔµ¼ì²âµÄ½á¹û

16

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ͼ3-10 ±ßÔµ¼ì²â 3.2.2Ö¸Õëʶ±ð

Ö¸ÕëµÄʶ±ð¿ÉÒÔ˵ÊÇʶ±ð¶ÁÊý×îΪÖØÒªµÄ»·½Ú£¬ÒDZíµÄ¶ÁÊý¶¼ÊÇÓÐÖ¸Õë¾ö¶¨µÄ£¬Ö¸ÕëÔڲɼ¯Í¼ÏñµÄ¹ý³ÌÖлáÁ¬ÐøµÄ±ä»»Ö¸Ïò£¬ÔÚÉãÏñÍ·Óë±íÅÌÎÞÏà¶ÔÔ˶¯µÄÇé¿öÏ£¬ÉãÏñÍ·²É¼¯µ½µÄÖ¸ÕëλÖò»Í¬µÄÁ½·ùͼÏñ£¬Ö¸ÕëÒ²¿ÉÒÔ¿´×÷Ò»ÌõÖ±Ïߣ¬¶øÇÒ±ÈÆäËû¿Ì¶ÈÏ߶¼Òª³¤ºÜ¶à£¬ËùÒÔ¿ÉÒÔ²ÉÓûô·ò±ä»»À´¼ì²âÖ¸Õ룬ÒÔ¼°Ê¶±ðÆäËûµÄ¿Ì¶È¡£

»ô·ò±ä»»ÔÚͼÏñ´¦ÀíÖÐÒ»ÖÖÓ¦Óúܹ㷺µÄʶ±ð¼¸ºÎÐÎ×´µÄ·½·¨£¬ÒÔ»ô·ò±ä»»¶î¡¢ÎªÔ­Àí£¬ÑÜÉú³öÐí¶àÆäËûµÄËã·¨£¬µ«ÊÇ´ÓºÚ°×ͼÏñÖмì²âÖ±Ïß»òÕßÏ߶ÎÊÇ×î»ù±¾µÄ»ô·ò±ä»»¡£±¾Éè¼ÆÖÐÖ¸Õë¼ì²âµÄÖ÷Ҫ˼·Ϊ£¬Ê×ÏÈͨ¹ý»ô·ò¼ì²â¼ì²â³öËùÓеÄÖ±Ïߣ¬°üÀ¨ËùÓеĿ̶ȺÍÖ¸Õ룬¶øÖ¸ÕëÔòÊÇËùÓÐÖ±ÏßÖÐ×µÄ£¬ËùÒÔ£¬½ÓÏÂÀ´Éè¼Æ³ÌÐòÇóÕâЩËù¼ì²â³öµÄÖ±ÏßÖеÄ×µÄÏߣ¬È»ºó¶ÔÖ±ÏßµÄÆðʼλÖýøÐбê¼Ç£¬²¢¶ÔÖ±Ïß½øÐбê¼Ç¡£

ͼ3-11ΪÀûÓûô·ò±ä»»¼ì²âÖ±Ïߣ¬Í¼3-12Ϊ¼ì²â³öµÄÖ¸ÕëͼÏñ£¬Ö¸Õë¼ì²âµÄÖ÷Òª³ÌÐòΪ£º

xlabel('\\theta'), ylabel('\\rho'); axis on, axis normal, hold on;

P = houghpeaks(H,1,'threshold',ceil(0.3*max(H(:)))); x = T(P(:,2)); y = R(P(:,1));

plot(x,y,'s','color','white');

lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7); hold on;

figure, imshow(RGB), hold on max_len = 0;

for k = 1:length(lines)

xy = [lines(k).point1; lines(k).point2];

plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');

17

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red'); len = norm(lines(k).point1 - lines(k).point2); if ( len > max_len) max_len = len; xy_long = xy; end end

ͼ3-11 »ô·ò±ä»»¼ì²âÖ±Ïß

ͼ3-12 Ö¸Õëʶ±ð

3.2.3¶ÁÊýʶ±ð

ÒDZí±íÅ̵ĶÁÊýʶ±ðÊÇÕû¸ö¶ÁÊýϵͳÖÐ×îΪÖØÒªµÄµÄ²¿·Ö£¬Ä¿Ç°¶ÁÊýʶ±ðµÄ

18

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

·½·¨¶àÖÖ¶àÑù£¬¾­¹ýÔÚ¹¤³§µÄʵµØ¿¼²ì£¬·¢Ïָù¤³§µÄÓÐЩ²ÄÁÏÉú²ú³µ¼ä»·¾³Ïà¶Ô½Ï²î£¬±íÅÌÄÑÒÔʱ¿Ì±£³ÖÇå½à£¬×ÜÊÇÕ´´øÓдóÁ¿µÄ·Û³¾£¬Í¨¹ý¾àÀë·¨¶ÁÈ¡±íÅ̵ĶÁÊýÏà¶ÔÀ´Ëµ±È½ÏÀ§ÄÑ£¬Ò²²»¹»Îȶ¨£¬¶øѡȡͨ¹ýÖ¸Õë½Ç¶ÈÀ´¶ÁÈ¡±íÅÌÊý¾ÝÔò¿ÉÒÔ¸üºÃµÄÊÊÓ¦»·¾³£¬Ìá¸ß¶ÁÊýµÄÎȶ¨ÐÔ¡£¶ÁÊýʶ±ðµÄÖ÷Òª³ÌÐòÈçÏ£º

plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); k=(xy(2,2)-xy(1,2))/(xy(2,1)-xy(1,1)); theta=pi/2+atan(k);

if((xy(1,1)+xy(2,1))/2<=N/2)

q=(theta+pi)*180/3.14; else

q=theta*180/3.14; end

shishu=q*c/Q; disp (theta); disp (q);

disp (shishu);

3.3Êý¾ÝÏÔʾ½çÃæµÄÉè¼Æ

±íÅÌÊý¾Ý¶ÁÈ¡³öÀ´ºó£¬ÐèÒªÖ±¹ÛµÄÏÔʾ³öÀ´£¬Õâʱ¾ÍÐèÒª´î½¨Ò»¸öÏÔʾ½çÃ棬Èç½ñ£¬ÓжàÖÖÈí¼þ¿ÉʵÏÖ¼ûÃæ´î½¨µÄ¹¦ÄÜ£¬±¾Éè¼ÆÖÐÑ¡ÔñµÄÊÇlabviewͼÐλ¯±à³ÌÈí¼þ£¬labviewÓÐÇ°Ãæ°åÓë³ÌÐò¿òͼÃæ°å¹¹³É¡£

3.3.1Êý¾ÝÏÔʾ½çÃæµÄÇ°Ãæ°å

Êý¾ÝÏÔʾ½çÃæµÄÇ°Ãæ°åÒ²¾ÍÊÇÎÒÃÇÖ±½Ó¿´µ½µÄÊý¾ÝÏÔʾ½çÃ棬Ëü°üÀ¨Êý¾ÝÏÔʾ¡¢Í¼ÏñÏÔʾ¡¢Í¼Ïñ·¾¶¡¢Êý¾Ý±ä»¯ÇúÏßͼÒÔ¼°Ò»Ð©»ù±¾µÄ²ÎÊýÉèÖò¿·Ö£¬ÈçÏÂͼËùʾ¡£

19

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ͼ3-13 Ç°Ãæ°å

¸Ã½çÃæÖУ¬¿ÉÒÔͨ¹ýÊó±ê»òÕß¼üÅÌÊäÈëÒDZíµÄ×î´óÖµºÍ×îСֵ£¬´Ó¶øÌá¸ßÁËÕû¸öÉè¼ÆµÄÊÊÓ¦ÐÔ£¬Í¨¹ýͼÏñÏÔʾ¿Ø¼þ¿ÉÒÔ¿´µ½ÊµÊ±µÄͼÏñ£¬Í¼ÏñÏÂÃæÓëÖ®¶ÔÓ¦µÄÊÇÊý¾ÝÏÔʾ£¬Êý¾ÝÏÔʾÓëͼÏñÏÔʾͬ²½½øÐУ¬¿ÉÒÔ¼°Ê±µÄ·¢ÏÖ¾ÀÕý´íÎó£¬ÍêÉÆϵͳ£¬Í¼ÏñÏÔʾÓÒ±ßΪÊý¾Ý±ä»¯ÇúÏßͼ£¬¿ÉÒÔÁ˽⵽Êý¾ÝÔÚ×î½üÒ»¶Îʱ¼äÄڵı仯Çé¿ö£¬Ê±¼ä·¶Î§¿É¸ù¾ÝÐèÒª×ÔÐÐÉèÖ㬽çÃæµÄ×óϽÇΪ·¾¶Ñ¡Ôñ£¬ÓÉÓÚÕû¸öϵͳÔÚ²»Í£µÄÔËת£¬ÎªÁË·Àֹ·¾¶Ñ¡Ôñ¶Ô»°¿ò²»¶ÏµÄµ¯³ö£¬±ØÐëÉèÖÃÒ»¸öĬÈÏ·¾¶£¬ÈÃϵͳ×ÔÐÐÑ¡È¡£¬ÉèÖ÷½·¨ÈçÏÂͼËùʾ¡£

3-14 ĬÈÏ·¾¶ÉèÖÃ

20

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

3.3.2Êý¾ÝÏÔʾ½çÃæµÄ³ÌÐò¿òͼ

Ç°Ãæ°åµÄ¿Ø¼þÑ¡ÔñºÃÖ®ºó£¬¾ÍÒªÔÚ³ÌÐò¿òͼÃæ°åÖÐÑ¡ÔñÏàÓ¦µÄº¯ÊýÒÔ¼°¶Ô¸÷²¿·ÖÖ®¼ä½øÐÐÁ¬ÏßÒÔʵÏÖÏàÓ¦µÄ¹¦ÄÜ£¬³ÌÐò¿òͼÃæ°åÈçÏÂͼËùʾ¡£

3-15 ³ÌÐò¿òͼÃæ°å

ͼƬÏÔʾÊÇͨ¹ývision¿Ø¼þÀ´ÊµÏֵģ¬Í¨¹ýmatlab½Å±¾½Úµãµ÷ÓÃmatlab³ÌÐò£¬ÊµÏÖͼÏñ´¦Àí¹¦ÄÜ£¬Í¨¹ýÔڽű¾¿òÉÏÌí¼ÓÊä³öÓëÊäÈëÀ´ÊµÏÖmatlab³ÌÐòµÄÊý¾ÝÊäÈëÓëÊä³ö£¬Òª×¢ÒâµÄÊÇ£¬½Å±¾¿òÉϵÄÊý¾ÝÊäÈëÓëÊä³öµÄ±äÁ¿Ãû±ØÐëÓëmatlab³ÌÐòÖÐÐèÒªÊäÈë»òÊä³öµÄ±äÁ¿Ãû±£³ÖÒ»Ö£¬Éè¼ÆÍêÕâЩ֮ºó£¬ÔÙÓÃÒ»¸öwhileÑ­»·À´ÊµÏÖϵͳµÄÁ¬ÐøÔËÐС£

3.4Êý¾Ý¿âµÄ½¨Á¢

¶ÁÈ¡³öÀ´µÄÊý¾ÝÒª´«ÈëÊý¾Ý¿âÖУ¬·½±ãÏÂÒ»¼¶µÄµ÷Óã¬ËùÒÔ£¬±ØÐëҪʵÏÖÓÃlabview¶ÔÊý¾Ý¿â½øÐзÃÎÊ£¬±¾Éè¼ÆÖÐÑ¡ÔñµÄÊÇaccessÊý¾Ý¿â£¬Ê¹ÓÃlabSQLÀ´ÊµÏÖlabview¶ÔaccessÊý¾Ý¿âµÄ·ÃÎÊ¡£

ʹÓÃLabSQL֮ǰ£¬ÐèÒª½¨Ò»¸öAccessÊý¾ÝÔ´¡£Êý¾ÝÔ´ÊÇODBCµ½Êý¾Ý¿âµÄ½Ó¿ÚÐÎʽ£¬ËüÃèÊöÁËÓû§ÐèÒª·ÃÎʵÄÊý¾Ý¿â¼°Æä¸÷Àà²ÎÊý£¬¶øÊý¾ÝԴͨ¹ýÊý¾ÝÔ´ÃûDSN ( Data Source Name)À´±êʶ¡£´ò¿ª¿ØÖÆÃæ°å£¬¹ÜÀíÉϾߣ¬Êý¾ÝÔ´¹ÜÀíÆ÷£¬Í¨¹ýÑ¡ÔñÊý¾ÝÔ´Çý¶¯¡¢ÅäÖÃÊý¾ÝÔ´²ÎÊýµÈ²Ù×÷¿ÉÍê³ÉAccessÊý¾ÝÔ´µÄ½¨Á¢¡£Ö÷Òª²Ù×÷½çÃæÈçͼ3-16ºÍͼ3-17Ëùʾ¡£

21

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ͼ3-16´´½¨Êý¾ÝÔ´

ͼ3-17´´½¨accessÊý¾ÝÔ´

AccessÊý¾ÝÔ´½¨Á¢ÒÔºó£¬Í¨¹ýlabview³ÌÐòÉè¼Æ¼´¿ÉʵÏÖlabview¶ÔÊý¾Ý¿âµÄ·ÃÎÊ¡£Labview³ÌÐò¿òͼÈçÏÂËùʾ¡£

22

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ͼ3-18Êý¾Ý¿â·ÃÎʳÌÐò¿òͼ

23

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

4.½áÂÛ

¢Ù¾­¹ýÔÚ¹¤³§µÄʵµØ²âÊÔ£¬Í¼Ïñ²É¼¯Óë´«Êä×°ÖÿÉÒÔÕý³£¹¤×÷£¬µçÄԶ˿ÉÒÔ

½ÓÊÕµ½ÇåÎúµÄͼÏñ£¬²¢ÇÒÕû¸öϵͳ¾ßÓÐÒ»¶¨µÄµÄ¿¹¸ÉÈŵÄÄÜÁ¦£¬ÔÚàÐÔӵĻ·¾³ÖÐÒà¿ÉÒÔʵÏÖÆ书ÄÜ¡£

¢Úͨ¹ýmatlab¿ÉʵÏÖͼƬµÄÔ¤´¦ÀíÒÔ¼°Ö¸Õëʶ±ð¶ÁÊýʶ±ð£¬¶ÁÈ¡µÄÊý¾ÝÏà¶Ô׼ȷ

¢Ûͨ¹ýlabview¿ÉÒԳɹ¦µÄµ÷ÓÃmatlabº¯Êý£¬²¢ÊµÏÖº¯ÊýµÄ¹¦ÄÜ£¬Í¨¹ýlabview´î½¨µÄ½çÃ棬¿ÉÒԹ۲⵽ʵʱµÄÒDZí¶ÁÊýÒÔ¼°ÒDZíͼÏñ£¬¿ÉÒԹ۲⵽ÒDZí¶ÁÊýÔÚÒ»¶Îʱ¼äÄڵı仯Çé¿ö£¬²¢ÇÒ¿ÉÒÔʵÏÖÁ¬ÐøµÄÔËÐС£

¢ÜÕû¸öϵͳµÄÎȶ¨ÐԽϸߣ¬¿ÉÒÔʵÏÖ³ÖÐøµÄ¹¤×÷£¬¶ÔËù´¦ÀíµÄÒDZíͼÏñµÄÊÊÓ¦ÐÔ½ÏÇ¿¡£

ÔÚ±¾´Î±ÏÒµÉè¼ÆÖУ¬ÎÒѧϰÁËmatlab£¬labview³ÌÐòÉè¼ÆÒÔ¼°accessµÄÏà¹Ø֪ʶ£¬Ñ§Ï°ÁËͼÏñ´¦ÀíµÄÏà¹Ø·½·¨£¬Ñ§»áÁ˸ü¶à½â¾öÎÊÌâ¡¢´¦ÀíÎÊÌâµÄ·½·¨£¬ÔöÇ¿ÁË´¦ÀíÎÊÌâµÄÄÜÁ¦£¬Îª½ñºóµÄ·¢Õ¹µì¶¨ÁËÁ¼ºÃµÄ»ù´¡¡£

24

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

ÖÂл

¸½Â¼Ò» matlabͼÏñ´¦Àí³ÌÐò

clear; clc;

close all;

RGB=imread('1.jpg');

figure,imshow(RGB); title('RGB') GRAY=rgb2gray(RGB);

figure,imshow(GRAY); title('GRAY') threshold=graythresh(GRAY); BW=im2bw(GRAY,threshold);

figure,imshow(BW); title('BW') BW=~BW;

25

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

figure,imshow(BW); title('~BW') BW=bwmorph(BW,'thin',Inf);

figure,imshow(BW); title('BWMORPH') [M,N]=size(BW);

[H,T,R] = hough(BW); figure;

imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit'); xlabel('\\theta'), ylabel('\\rho'); axis on, axis normal, hold on;

P = houghpeaks(H,1,'threshold',ceil(0.3*max(H(:)))); x = T(P(:,2)); y = R(P(:,1));

plot(x,y,'s','color','white');

%%%%%%%%%%%%%%%%%%%% Find lines and plot them%%%%%%%%%%%%%% lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7); hold on;

figure, imshow(RGB), hold on max_len = 0;

for k = 1:length(lines)

xy = [lines(k).point1; lines(k).point2];

plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); %%%%%%%%%% plot beginnings and ends of lines%%%%%%%%%%%%%%%%%%

plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');

%%%% determine the endpoints of the longest line segment %%%% len = norm(lines(k).point1 - lines(k).point2); if ( len > max_len) max_len = len; xy_long = xy; end end

%%%%%%%%%%%%% highlight the longest line segment%%%%%%%%%%%%%%

plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); k=(xy(2,2)-xy(1,2))/(xy(2,1)-xy(1,1)); theta=pi/2+atan(k);

if((xy(1,1)+xy(2,1))/2<=N/2)

q=(theta+pi)*180/3.14; else

q=theta*180/3.14; end

shishu=q*6/2700-0.2; disp (theta); disp (q);

26

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

disp (shishu);

j=imread('1.jpg'); x=RGB2gray(j); subplot(1,2,1); imshow(x); title('ԭͼÏñ');

f=double(x); [m,n]=size(f);

h=fspecial('gaussian',[25,25],80);%´´½¨¸ß˹ģ°å q=imfilter(f,h,'same');

s=log(f+0.03)-log(q+0.03);

r=exp(s);

%¹éÒ»»¯´¦Àí

max_r=max(r(:))*0.27; min_r=min(r(:));

r=(r-min_r)/(max_r-min_r); index=find(r>1); r(index)=1; R=mat2gray(r); subplot(1,2,2); imshow(R);

title('´¦ÀíºóµÄͼÏñ'); G=im2bw(R,0.7); imshow(G); I=uint8(G);

bw=edge(I,'sobel'); imshow(bw);

A=imread('1.jpg'); I=rgb2gray(A);

T=0.5*(double(min(I(:)))+double(max(I(:)))); done=false; while ~done

g=I>=T;

Tnext=0.5*(mean(I(g))+mean(I(~g))); done=abs(T-Tnext)<0.5;

27

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

T=Tnext; end J=I;

K=find(J>=T); J(K)=255; K=find(J

subplot(1,2,1),imshow(I,[]),title('ԭʼͼÏñ'); subplot(1,2,2),imshow(J,[]),title('·Ö¸îºóͼÏñ');

t1=clock;

I=imread('1.jpg'); subplot(1,2,1); J=rgb2gray(I);

title('psoË㷨ͼÏñ·Ö¸îµÄ½á¹û'); [a,b]=size(J);

[p,x]=imhist(J,256); L=x';

LP=p'/(a*b); n=256; c1=2; c2=2;

wmax=0.9; wmin=0.4; G=10; M=15;

X=min(L)+fix((max(L)-min(L))*rand(1,M)); V=min(L)+(max(L)-min(L))*rand(1,M); m=0;

for i=1:1:n

m=m+L(i)*LP(i);

endpbest=zeros(M,2); gbest1=0; gbest2=0; GG=0;

t2=clock; for k=1:1:G

w(k)=wmax-(wmax-wmin)*k/G; for i=1:1:M

t=length(find(X(i)>=L)); r=0; s=0;

for j=1:1:t

28

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

r=r+LP(j);

s=s+L(j)*LP(j); end

W0(i)=r; W1(i)=1-r; U0(i)=s/r;

U1(i)=(m-s)/(1-r); end

for i0=1:1:M

BB(i0)=W0(i0)*W1(i0)*((U1(i0)-U0(i0))^2); end

for i=1:1:M

if pbest(i,2)

[MAX,CC]=max(BB); if MAX>=gbest2 gbest2=MAX; gbest1=X(CC); end

GG(k)=gbest2; for i=1:1:M

V(i)=round(w(k)*V(i)+c1*rand*(pbest(i,1)-X(i))+c2*rand*(gbest1-X(i)));

X(i)=V(i)+X(i); end end

for i=1:1:a

for j=1:1:b

if J(i,j)>gbest1 J(i,j)=250; else

J(i,j)=0; end end end

kk=1:1:G; gbest1; figure(1); imshow(J); figure(2);

29

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

plot(kk,GG)

tt=etime(clock,t1); end

I=imread('1.jpg'); tmin=min(I(:)); tmax=max(I(:)); th=(tmin+tmax)/2; ok=true; while ok

g1=I>=th; g2=I

u1=mean(I(g1)); u2=mean(I(g2)); tnew=(u1+u2)/2;

if abs(th-tnew)<1 ok=0; end end

th=tnew;

th=floor(th);

Inew=im2bw(I,th/255); subplot(1,2,1) imshow(I); title('ԭʼͼÏñ'); subplot(1,2,2) imshow(Inew);

t=['µü´ú·¨·Ö¸îºóµÄͼÏñ£¬ãÐÖµ=' num2str(th)]; title(t);

A0=imread('1.jpg'); seed=[100,220];

thresh=15;%ÏàËÆÐÔÑ¡ÔñãÐÖµ A=rgb2gray(A0);

A=imadjust(A,[min(min(double(A)))/255,max(max(double(A)))/255],[]);

A=double(A); B=A;

[r,c]=size(B); n=r*c;

pixel_seed=A(seed(1),seed(2)); q=[seed(1) seed(2)]; top=1;

M=zeros(r,c);

M(seed(1),seed(2))=1;

30

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

count=1;

while top~=0; r1=q(1,1); c1=q(1,2); p=A(r1,c1); dge=0;

for i=-1:1

for j=-1:1

if r1+i<=r & r1+i>0 & c1+j<=c & c1+j>0

if abs(A(r1+i,c1+j)-p)<=thresh & M(r1+i,c1+j)~=1 top=top+1;

q(top,:)=[r1+i c1+j]; M(r1+i,c1+j)=1; count=count+1; B(r1+i,c1+j)=1; end

if M(r1+i,c1+j)==0; dge=1; end else

dge=1; end end end

if dge~=1

B(r1,c1)=A(seed(1),seed(2)); end

if count>=n top=1; end

q=q(2:top,:); top=top-1; end

subplot(1,2,1),imshow(A,[]); subplot(1,2,2),imshow(B,[]);

A0=imread('1.jpg'); seed=[100,220];

thresh=15;%ÏàËÆÐÔÑ¡ÔñãÐÖµ A=rgb2gray(A0);

A=imadjust(A,[min(min(double(A)))/255,max(max(double(A)))/255],[]);

A=double(A);

31

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

B=A;

[r,c]=size(B); n=r*c;

pixel_seed=A(seed(1),seed(2)); q=[seed(1) seed(2)]; top=1;

M=zeros(r,c);

M(seed(1),seed(2))=1; count=1;

while top~=0; r1=q(1,1); c1=q(1,2); p=A(r1,c1); dge=0;

for i=-1:1 for j=-1:1

if r1+i<=r & r1+i>0 & c1+j<=c & c1+j>0

if abs(A(r1+i,c1+j)-p)<=thresh & M(r1+i,c1+j)~=1 top=top+1;

q(top,:)=[r1+i c1+j]; M(r1+i,c1+j)=1; count=count+1; B(r1+i,c1+j)=1; end

if M(r1+i,c1+j)==0; dge=1; end else

dge=1; end end end

if dge~=1

B(r1,c1)=A(seed(1),seed(2)); end

if count>=n top=1; end

q=q(2:top,:); top=top-1; end

subplot(1,2,1),imshow(A,[]); subplot(1,2,2),imshow(B,[]);

32

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

A0=imread('1.jpg'); seed=[100,220];

thresh=15;%ÏàËÆÐÔÑ¡ÔñãÐÖµ A=rgb2gray(A0);

A=imadjust(A,[min(min(double(A)))/255,max(max(double(A)))/255],[]);

A=double(A); B=A;

[r,c]=size(B); n=r*c;

pixel_seed=A(seed(1),seed(2)); q=[seed(1) seed(2)]; top=1;

M=zeros(r,c);

M(seed(1),seed(2))=1; count=1;

while top~=0; r1=q(1,1); c1=q(1,2); p=A(r1,c1); dge=0;

for i=-1:1 for j=-1:1

if r1+i<=r & r1+i>0 & c1+j<=c & c1+j>0

if abs(A(r1+i,c1+j)-p)<=thresh & M(r1+i,c1+j)~=1 top=top+1;

q(top,:)=[r1+i c1+j]; M(r1+i,c1+j)=1; count=count+1; B(r1+i,c1+j)=1; end

if M(r1+i,c1+j)==0; dge=1; end else

dge=1; end end end

if dge~=1

B(r1,c1)=A(seed(1),seed(2)); end

33

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

if count>=n top=1; end

q=q(2:top,:); top=top-1; end

subplot(1,2,1),imshow(A,[]); subplot(1,2,2),imshow(B,[]);

A0=imread('1.jpg'); seed=[100,220];

thresh=15;%ÏàËÆÐÔÑ¡ÔñãÐÖµ A=rgb2gray(A0);

A=imadjust(A,[min(min(double(A)))/255,max(max(double(A)))/255],[]);

A=double(A); B=A;

[r,c]=size(B); n=r*c;

pixel_seed=A(seed(1),seed(2)); q=[seed(1) seed(2)]; top=1;

M=zeros(r,c);

M(seed(1),seed(2))=1; count=1;

while top~=0; r1=q(1,1); c1=q(1,2); p=A(r1,c1); dge=0;

for i=-1:1 for j=-1:1

if r1+i<=r & r1+i>0 & c1+j<=c & c1+j>0

if abs(A(r1+i,c1+j)-p)<=thresh & M(r1+i,c1+j)~=1 top=top+1;

q(top,:)=[r1+i c1+j]; M(r1+i,c1+j)=1; count=count+1; B(r1+i,c1+j)=1; end

if M(r1+i,c1+j)==0; dge=1; end

34

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

else

dge=1; end end end

if dge~=1

B(r1,c1)=A(seed(1),seed(2)); end

if count>=n top=1; end

q=q(2:top,:); top=top-1; end

subplot(1,2,1),imshow(A,[]); subplot(1,2,2),imshow(B,[]);

¸½Â¼¶þ labview³ÌÐò¿òͼ

35

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

²Î¿¼ÎÄÏ×

36

¹¤ÒµÉú²úÏßÔÚÏß¼ì²âÊý¾ÝÊý×Ö»¯´¦ÀíϵͳÉè¼Æ

[1]

Sablatnig, Robert, Kropatsch, Walter G. Automatic Reading of Analog

DisplayInstruments.Conference on Pattern Recognition, 1994, 1£º794-797.

[2]

Kyong-Ho Kim, Sung-Li Chen, Yong-Bum Lee, Jong Min Lee. A Study on Analog and

Digital Meter Recognition Based on Image Processing Technique. Journal of the Korean Institute of elematics and Eleatronics, 1995, 9(32)£º79-94.

[3]

F.C0rreaAlegria,A.Cruzz.Serra.Automatie Calibration of Analog and Digital

Measuring Instruments Using ComPuter Vision[J].IEEE Transaction on Instrumentation and Measurement,2000,49(l):94Ò»99.

[4]

Ëï·ï½Ü£¬°²Ìï½­£¬·¶½ÜÇ壬ÑƼ£¬ÐìÕ÷. µçÁ¦±äѹÆ÷ζȱíÖ¸ÕëλÖÃʶ±ðÑо¿[J]. ÖÐ

¹úµç»ú¹¤³Ìѧ±¨,2007,27(7): 70-75.

[5]

ÀèÃ÷£¬ÍõºñÊà.·É»úÁãλ¼ì²âϵͳÖеÄ×ù²Õ¶ÁÊýʶ±ð·¨ÍÅ.ÄϾ©º½¿Õº½Ìì´óѧѧ±¨£¬1996£¬

l(28)£º106-112.

[6]

Öܺ飬ÖÓÃ÷»Û.¹¤Òµ¹ý³ÌÏÔʾµÄÊý×Ö´¦ÀíÓëÊÓƵ´«Êä.ÒDZíÒDZíѧ±¨(Ôö¿¯)£¬2003£¬

4(24):359-361.57

[7]

ÑîÏþÃô£¬ºÎСº££¬Îâ쿵È.»ùÓÚ¸ß˹»ìºÏÄ£Ð͵ijµÁ¾×Ö·ûʶ±ðËã·¨.¹âµç×Ó?¼¤¹â£¬2007£¬

4:487-490.

[8]

ºÎÖÇ½Ü , Õűò , ½ðÁ¬ÎÄ . ¸ß¾«¶ÈÖ¸ÕëÒDZí×Ô¶¯¶ÁÊýʶ±ð·½·¨ [J]. ¼ÆËã»ú¸¨Öú¹¤

³Ì ,2006,15(3): 9-18.

[9]

ÄþÖ¾¸Õ, ÍôÈÊ»Í, Ìƶ¬, Àîò. »ùÓÚͼÏñ´¦ÀíµÄ¸ß¾«¶ÈÒDZíÅжÁ·½·¨[J]. ´«¸ÐÆ÷Óë΢

ϵͳ,2006,25(3): 32-37.

[10][11]

ÓÚµîãü. ͼÏñ¼ì²âÓë´¦Àí¼¼Êõ[M]. Î÷°²: Î÷°²µç×ӿƼ¼´óѧ³ö°æÉç, 2006: 103-169.

Ìï´åÐãÐÐ(Öø), ½ðϲ×Ó, ÇÇË«(Òë). ¼ÆËã»úͼÏñ´¦Àí[M]. ±±¾©: ¿Æѧ³ö°æÉç,2004£º

117-121.

[12]

Rezai-rad£¬G. Aghababaie£¬M. Comparison of SUSAN and Sobel Edge Detection in

MRI Images for Feature Extraction [C]. Information and Communication Technologies, 2006.ICTTA ¡®06. 2nd, 2006, 1: 1103-1107.

[13][14]

Éò½à, ¶ÅÓîÈË, ¸ßºÆ¾ü. ͼÏñ±ßÔµ¼ì²â¼¼ÊõÑо¿[J]. ÐÅÏ¢¼¼Êõ,2005, (12): 32-34. Villegas, O.O.V. Elias, R.P. Villela, P.R. Salazar, A.M. Edge Preserving Lossy

Image Compression with Wavelets and Contourlets [C]. Electronics, Robotics and Automotive Mechanics Conference, 2006, 1: 3-8.

[15]

ÕÅÑÞȺ, ÃÏ·²Áú. MATLAB ÔÚͼÏñ±ßÔµ¼ì²âÖеÄÓ¦ÓÃ[J]. ¼ÆËã»úÓ¦ÓÃÑо¿, 2004, (6)£º

144-146.

37

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ì滻Ϊ@)