y2=v2^2*sin(2*x)/g; %³õËÙ¶ÈΪ15ϵÄÉä³Ì y3=v3^2*sin(2*x)/g; %³õËÙ¶ÈΪ20ϵÄÉä³Ì y4=v4^2*sin(2*x)/g; %³õËÙ¶ÈΪ25ϵÄÉä³Ì subplot(2,2,1); %Ñ¡Ôñ2*2¸öÇøµÄÒ»ºÅÇø
plot(x,y1); %Êä³ö³õËÙ¶ÈΪ10ϵÄÉä³ÌÇúÏß title('v0=10'); %¼ÓͼÐαêÌâ
text(pi/4,10,'Éä³ÌΪ10'); %ÔÚ×î´óÉä³Ì´¦¼ÓͼÐÎ˵Ã÷ subplot(2,2,2); %Ñ¡Ôñ2*2¸öÇøµÄ¶þºÅÇø
plot(x,y2); %Êä³ö³õËÙ¶ÈΪ15ϵÄÉä³ÌÇúÏß title('v0=15'); %¼ÓͼÐαêÌâ
text(pi/4,22.5,'Éä³ÌΪ22.5'); %ÔÚ×î´óÉä³Ì´¦¼ÓͼÐÎ˵Ã÷ subplot(2,2,3); %Ñ¡Ôñ2*2¸öÇøµÄÈýºÅÇø
plot(x,y3); %Êä³ö³õËÙ¶ÈΪ20ϵÄÉä³ÌÇúÏß title('v0=20'); %¼ÓͼÐαêÌâ
text(pi/4,40,'Éä³ÌΪ40'); %ÔÚ×î´óÉä³Ì´¦¼ÓͼÐÎ˵Ã÷ subplot(2,2,4); %Ñ¡Ôñ2*2¸öÇøµÄËĺÅÇø
plot(x,y4); %Êä³ö³õËÙ¶ÈΪ25ϵÄÉä³ÌÇúÏß title('v0=25'); %¼ÓͼÐαêÌâ
text(pi/4,62.5,'Éä³ÌΪ62.5'); %ÔÚ×î´óÉä³Ì´¦¼ÓͼÐÎ˵Ã÷ %³ÌÐò2£¨Å×Éä½ÇÓë·ÉÐз¾¶¼°ÆäÒ»½×µ¼ÊýÇúÏߣ© x=(0:pi/100:pi/2); %²úÉúÐÐÏòÁ¿x
y1=(sin(x)+(cos(x).*cos(x)).*log(1+sin(x))./cos(x))*100/9.8; %·ÉÐз¾¶³¤¶ÈÓëÅ×Éä½ÇÖ®¼äµÄº¯Êý¹Øϵ y2=cos(x).*(1-sin(x).*log((1+sin(x))./cos(x)))*200/9.8;
%·ÉÐз¾¶¶ÔÅ×Éä½ÇµÄÒ»½×µ¼ÊýµÄº¯Êý¹Øϵ
m=(sin(pi/6)+(cos(pi/6)*cos(pi/6))*log(1+sin(pi/6))/cos(pi/6))*100/9.8; %Å×Éä½ÇȡijһÌض¨ÖµÊ±·ÉÐз¾¶Öµ
n=cos(pi/3)*(1-sin(pi/3)*log((1+sin(pi/3))/cos(pi/3)))*200/9.8; %Å×Éä½ÇȡijһÌض¨ÖµÊ±·ÉÐз¾¶Ò»½×µ¼µÄÖµ plot(x,y1,'b:'); %Êä³ö·ÉÐз¾¶³¤¶ÈÓëÅ×Éä½ÇÖ®¼äµÄº¯Êý±í´ïʽ hold on; %ÉèÖÃͼÐα£³Ö״̬
plot(x,y2,'k'); % Êä³ö·ÉÐз¾¶¶ÔÅ×Éä½ÇµÄÒ»½×µ¼ÊýµÄº¯Êý±í´ïϵ hold off; %¹Ø±ÕͼÐα£³Ö
text(pi/6,m,'y1'); %ÔÚÖ¸¶¨Î»ÖÃÌí¼ÓͼÀý˵Ã÷ text(pi/3,n,'y2'); %ÔÚÖ¸¶¨Î»ÖÃÌí¼ÓͼÁÐ˵Ã÷ grid; %Íø¸ñÏß¿ØÖÆ %³ÌÐò3£¨Æ½Å×ËÙ¶ÈËæʱ¼äµÄ±ä»¯¹Øϵ£©
t=0:0.01:10; %²úÉúʱ¼äµÄÐÐÏòÁ¿ Vt=-sqrt(10^2+9.8*t.^2); %ÇóËÙ¶È
plot(t,Vt); %Êä³öËÙ¶ÈÇúÏß title('ÎïÌåËÙ¶ÈËæʱ¼äµÄ±ä»¯'); % ͼÐÎÃû³Æ grid %¼ÓÍø¸ñÏß %³ÌÐò4£¨Æ½Å×Ô˶¯µÄ¹ì¼££©
t=0:0.01:10; %²úÉúʱ¼äÐÐÏòÁ¿
- 16 -
s=-sqrt((3*t).^2+(0.5*9.8*t.^2).^2); %ÇóλÒÆ
plot(t,s,'r:'); %Êä³öλÒÆÇúÏß title('ÎïÌåƽÅ×Ô˶¯¹ì¼£'); %ͼÐÎÃû³Æ grid %¼ÓÍø¸ñÏß
%³ÌÐò5£¨ÎïÌåбÅ×Ô˶¯ÇúÏߣ© clear; clc;
global location v0 alpha g;
options={'³õʼλÖã¨×ø±ê£©','³õʼËÙ¶Èv0' ,'Å×Éä½Ç¶È','ÖØÁ¦¼ÓËÙ¶Èg',}; topic='seting'; lines=1;
def={'[0,0]','20','45','9.8'};
h=inputdlg(options,topic,lines,def); location=eval(h{1}); v0=eval(h{2}); alpha=eval(h{3}); g=eval(h{4}); a=location(1); b=location(2);
alfa=alpha*pi/180;
tEnd=v0*sin(alfa)/g+((v0*sin(alfa)/g)^2+2*b/g)^0.5;%бÅ×ÎïÌåµÄÔ˶¯Ê±¼ä t=linspace(0,tEnd);
x=v0*cos(alfa)*t+a;%бÅ×ÎïÌåµÄˮƽλÒÆ
y=v0*sin(alfa)*t-0.5*g*t.^2+b;%бÅ×ÎïÌåµÄÊúֱλÒÆ plot(x,y); hold on
plot(x(100),y(100),'o') xlabel ˮƽ¾àÀë/m ylabel ¸ß¶È/m title Å×Ìå¹ì¼£
%³ÌÐò6£¨Å×Éä½ÇΪ90¶ÈµÄÌØÊâÅ×ÌåÔ˶¯ÈÎÒâʱ¿ÌµÄλÖúÍËٶȣ©
v0=15; %³õËÙ¶È h=10; %³õʼ¸ß¶È g=-9.8; %ÖØÁ¦¼ÓËÙ¶È k=0.8; %Ë¥¼õϵÊý T=0; %ÂäµØʱ¼ä
for t=0:0.05:20 % ²úÉúʱ¼äµÄÐÐÏòÁ¿ v=v0+g*(t-T); %ÇóËÙ¶È y=h+v0*(t-T)+g*(t-T)^2/2; %Çó¸ß¶È if y<=0 %Ñ»·ÅжÏÌõ¼þ v0=-k*v; %Ë¥¼õµÄËÙ¶È T=t; %ÇóÇòÿ´ÎÂäµØËùÓÃʱ¼ä h=0; %½«¸ß¶È±äÁã end %Ñ¡Ôñ½á¹¹½áÊø
- 17 -
subplot(1,2,1); %Ñ¡Ôñ1*2ÖеÄÒ»ºÅÇø pause(0.1); %ÑÓ»º
plot(1,y,'or','MarkerSize',10,'Markerface',[1,0,0]); %Êä³öÇóÇòµÄÔ˶¯Í¼Ïñ title('Ô˶¯±ä»¯Í¼'); %ͼÐÎÃû³Æ axis([0,2,0,25]); %×ø±ê¿ØÖÆ
subplot(2,2,2); %Ñ¡Ôñ2*2ÖеĶþºÅÇø axis([0,20,-25,30]); %×ø±ê¿ØÖÆ grid on; %²»»Íø¸ñÏß
plot(t,v,'*r','MarkerSize',2); %»ÇòµÄËÙ¶ÈÇúÏß xlabel('ʱ¼ät'); %×ø±êÖá˵Ã÷ ylabel('ËÙ¶Èv'); %×ø±êÖá˵Ã÷ title('Ëٶȱ仯Ç÷ÊÆͼ'); %ͼÐÎÃû³Æ hold on; %ÉèÖÃͼÐα£³Ö״̬ subplot(2,2,4); %Ñ¡Ôñ2*2ÖеÄËĺÅÇø axis([0,20,0,25]); %×ø±ê¿ØÖÆ grid on; %²»¼ÓÍø¸ñÏß
plot(t,y,'*b','MarkerSize',2); %»ÇòµÄλÖÃÇúÏß xlabel('ʱ¼ät'); %×ø±êÖá˵Ã÷ ylabel('¸ß¶Èy'); %×ø±êÖá˵Ã÷ title('λÖñ仯ͼ'); %ͼÐÎÃû³Æ grid on %²»¼ÓÍø¸ñÏß hold on %ÉèÖÃͼÐα£³Ö״̬ end %Ñ»·½áÊø
%³ÌÐò7£¨²»Í¬µÄ³öÊÖËٶȺͳöÊָ߶ȵijöÊֽǶȺÍÈëÉä½Ç¶È0 % ¶ÔÓÚ³öÊÖËÙ¶Èv=8.0~9.0m/sºÍ³öÊָ߶Èh=1.8~2.1m,ÓÉ(3)ʽ % ¼ÆËã³öÊֽǶÈa1,a2,ÓÉ(7)ʽ¼ÆËã³öÈëÉä½Ç¶Èb1,b2,½á¹û¼û±í1 clear;clc;
H=3.05;h=1.8:0.05:2.1;L=4.6;g=9.8;
input('¸ß¶È ³öÊÖ½Ç1 ³öÊÖ½Ç2 Èë¿ò½Ç1 Èë¿ò½Ç2');
% v=sqrt(g*(H-h+sqrt(L*L+(H-L)^2))); for v=8.0:0.5:9.0;
for h=1.8:0.05:2.1;
%ÇóÇòÔÚ³öÊÖʱÇòÐĵijöÉä½Ç
a=atan(v.^2/(g*L).*(1+sqrt(1-2*g./v.^2.*(H-h+g*L^2./ b=atan(v.^2/(g*L).*(1-sqrt(1-2*g./v.^2.*(H-h+g*L^2./ a11=max(a,b);a21=min(a,b);
a1=180.*a11/pi;a2=180.*a21/pi; %ÇóÇòÈë¿òʱµÄÈëÉä½Ç
b11=atan(tan(a11)-2.*(H-h)/L); b21=atan(tan(a21)-2.*(H-h)/L); b1=180.*b11/pi;b2=180.*b21/pi;
- 18 -
(2.*v.^2))))); (2.*v.^2)))));
R = [v' h' a1' b1' a2' b2'] end end
%³ÌÐò8(³öÊֽǶȺͳöÊÖËÙ¶È×î´óÆ«²î) % Çó³öÊÖʱ×î´óÆ«ÒƾàÀë %Çó³öÊÖʱ×î´óÆ«ÒƽÇ
D=0.45;d=0.246;H=3.05;L=4.6;g=9.8;
input('³öÊÖËÙ¶È ¸ß¶È ³öÊÖ½Ç¶È Æ«²îa Æ«²îv Ïà¶ÔÆ«²îa Ïà¶ÔÆ«²îv'); for v=8.0:0.5:9 for h=1.8:0.05:2.1
a1=atan(v.*v./(g.*L).*(1+sqrt(1-2.*g./(v.*v).*(H-h+g.*L.*L./(2.*v.*v))))); a=180.*a1/pi;
b11=atan(tan(a1)-2.*(H-h)/L); b=180.*b11/pi;
xx=D/2-d/sin(b11)/2;%xxΪ
aa1=(g*L-v.*v.*sin(a1).*cos(a1)).*xx./L./(v.*v-g.*L.*tan(a1));aΪ aa=aa1*180/pi;
vv=(g.*L-v.*v.*sin(a1).*cos(a1)).*xx.*v/(g*L^2);%vvΪ A2=[v' h' a' aa' vv' (abs(vv./v))' (abs(aa./a))'] end
end
4.¶Ô±¾¿ÎµÄÆÀÊö¡¢½¨Òé
¿ªÉ衶ÊýѧʵÑéÓëMatlab¡·ÊÇΪÈÃѧÉúѧϰ¡°ÓÃÊýѧ¡±£¬¼ÓÇ¿¶¯ÊÖÄÜÁ¦£¬ÑµÁ·´´ÐÂ˼ά¡£ÊýѧʵÑéÊÇÒ»ÖÖÓÐÓõÄѧϰÊÖ¶Î:ͨ¹ý¶ÔÌصãÀý×ӵļÆËãºÍ¹Û²ì£¬¿É°ïÖúÎÒÃÇÖ±¹ÛµØÀí½â·Ç³£³éÏóµÄÊýѧÄÚÈÝ£¬Á˽âËûµÄÓ¦Óñ³¾°£¬»¯¿ÝÔïΪÓÐȤ£¬¼¤·¢Ñ§Ï°ÊýѧµÄÐËȤ¡£ÊýѧʵÑéÊÇÒ»ÖÖÓÐЧµÄ¿ÆÑз½·¨£º½²Ò»¶ÑÊý¾Ý¿ÉÊÓ»¯£¬»òÕßÑ¡ÔñÓдú±íÐÔµÄÌض¨ÊµÀý½øÐй۲죬´Ó¶ø·¢Ïֺ͹éÄÉÓÐÒâÒåµÄ¹æÂɲ¢½øÐÐÀíÂÛÂÛÖ¤¡£
×öΪ³õѧÕߣ¬Ó¦¸ÃÓиü¶à»ú»á×Ô¼º¶¯ÊÖÓÃmatlab½â¾öÎÊÌ⣬´Ó¼òµ¥µ½¸´ÔÓ£¬ÈÃѧÉúʵ¼Ê
- 19 -
ÕÆÎÕmatlabµÄʹÓá£Òò´Ë½¨ÒéÈÃѧÉúÄÜÓиü¶àµÄ»ú»áµ½»ú·¿ÉÏ»ú£¬Ñ§ÉúÔÚʵ¼Ê²Ù×÷ÖÐÓöµ½ÎÊÌâÒ²Äܼ°Ê±µÃµ½ÀÏʦָµã¡£Ò²ÐíÕâÑùÄÜÈÃѧÉú¸üÖ±¹ÛµØÕÆÎÕmatlab¡£ÁíÒ»·½Ã棬ϣÍû¿Î³ÌÖеÄÄÚÈÝÄܸü¶àµÄÓëÎÒÔºÏà¹ØרҵµÄ֪ʶÁªÏµ£¬ÕâÑùÄܸüºÃµÄÌåÏÖѧÒÔÖÂÓᣠ5.ÊÕ»ñ¡¢Ìå»áºÍ×ÔÎÒÆÀ·Ö
ͨ¹ýÕâѧÆÚµÄѧϰ£¬ÎÒ¶ÔMATLABÕâß߼¶¼ÆËã»úÓïÑÔÓÐÁ˳õ²½µÄÁ˽⣬£ºÆä¾ßÓй¦ÄÜÇ¿¡¢Ð§Âʸߡ¢¼òµ¥Ò×ÐеÈÌص㡣¿É¿¿µÄÊýÖµ¼ÆËãºÍ·ûºÅ¼ÆË㹦ÄÜ¡¢Ç¿´óµÄ»æͼ¹¦ÄÜ¡¢¼òµ¥Ò×ѧµÄÓïÑÔÌåϵÒÔ¼°ÎªÊýÖÚ¶àµÄÓ¦Óù¤¾ßÏäÊÇÆäÇø±ðÓÚÆäËü¿Æ¼¼Ó¦ÓÃÈí¼þµÄÏÔÖø±êÖ¾¡£»¹¾ß±¸ºÜÇ¿µÄ¿ª·ÅÐÔ£¬³ýÄÚ²¿º¯ÊýÍ⣬ËùÓÐMATLAB»ù±¾ÎļþºÍ¸÷¹¤¾ßÏäÎļþ¶¼ÊǿɶÁ¿É¸ÄµÄÔ´Îļþ£¬Óû§¿ÉÒÔͨ¹ý¶ÔÔ´ÎļþµÄÐ޸Ļò¼ÓÈë×Ô¼º±àдµÄÎļþÈ¥¹¹³ÉеÄרÓù¤¾ßÏä¡£
MATLAB¾ßÓгÌÐò¿ØÖƽṹ¡¢º¯Êýµ÷Óá¢Êý¾Ý½á¹¹¡¢ÊäÈëÊä³ö¡¢ÃæÏò¶ÔÏóµÈ³ÌÐòÓïÑÔÌØÕ÷£¬Òò´ËÓ봫ͳ±à³ÌÓïÑÔÒ»Ñù£¬¿ÉÒÔ½øÐгÌÐòÉè¼Æ£¬¶øÇÒ¼òµ¥Ò×ѧ£¬±à³ÌЧÂʸߡ£MATLABÒÔ¾ØÕó×îΪÊý¾Ý²Ù×÷µÄ»ù±¾µ¥Î»£¬Ê¹µÃ¾ØÕóÔËËã±äµÃ¼ò½Ý¡¢·½±ã¡¢¸ßЧ£¬Æ仹ÌṩÁËÊ®·Ö·á¸»µÄÊýÖµ¼ÆË㺯Êý¡¢·ûºÅ¼ÆË㺯Êý¡£ÓÃÆä»æͼʮ·Ö·½±ã£¬»¹¿É¶ÔͼÐνøÐÐÐÞÊκͿØÖÆ¡£ ÔÚ×ÛºÏʵÑ鱨¸æµÄд×÷¹ý³ÌÖУ¬ÎÒ·ÔÄÁËÊýѧרҵµÄ¿Î±¾£¬»¹ÓÐÎïÀí¿Î±¾£¬Í¬Ê±Ò²²éÔÄÁËÍøÉϵÄ×ÊÁÏ£¬×îÖÕÈ·¶¨ÁËʵÑéÖ÷Ìâ¡£Ö÷Òª¾õµÃÊýѧ·½ÃæµÄ¶«Î÷дÆðÀ´ÄÚÈݽÏÉÙ£¬ËùÓÐÑ¡ÔñÁËÎïÀí·½ÃæÄÚÈÝËäÉÙµ«Ó¦ÓúܹãµÄÅ×ÌåÔ˶¯¡£¸Ð´¥±È½Ï´óµÄÊÇ£¬Õâ¸öʵÑé²»ÔÙÊÇÒ»¸ö¼òµ¥µÄÎïÀí·ÖÎö£¬¶øÊÇ´ÓÊýѧµÄ½Ç¶È¶¨Á¿µØÇó½âÏà¹ØÊý¾Ý¡£Matlab¿É¿¿µÄÊýÖµ¼ÆËãºÍ·ûºÅ¼ÆË㹦ÄÜ¡¢Ç¿´óµÄ»æͼ¹¦ÄÜ¿ÉÒÔ˵±íÏÖµÄÁÜÀ쾡Ö¡£²»Ê¹ÓÃÕâÖÖ¹¤¾ß£¬ºÜ¶àÎÊÌâ»òÐíÖ»ÄÜÓж¨ÐԵĽáÂÛÉõÖÁÊDz»ÄÜÓнáÂÛ¡£ÔÚMatlabÖУ¬ÎïÀí²»ÔÙÖ»ÊÇÎïÀí£¬ÊýѧҲ²»Ö»ÊÇÊýѧ£¬¶àѧ¿ÆÖ»ÊǽáºÏ²ÅÄܽâ¾öÒ»¸öʵ¼ÊÎÊÌâ¡£µ±È»£¬ÎÒ×öΪһ¸ö³õѧÕߣ¬Matlab¸ü¶àµÄÓ¦Óû¹Ã»ÕÆÎÕ£¬¸ü¸´ÔӵijÌÐò»¹²»ÄÜʹÓ᣸ÃʵÑé²Î¿¼ÁËһЩ×ÊÁÏ£¬½è¼øµÄһЩ·ÖÎö˼ÏëºÍ±à³Ì¸ñʽ£¬¾ø´ó²¿·Ö¹«Ê½ÊÇ×Ô¼ºÊ¹ÓñàÒëÆ÷±àд£¬ÉÙ²¿·Ö¸´ÔÓ¹«Ê½ÊÇÌ×Óõġ£ËùÓгÌÐò¾ù¾¹ýµ÷ÊÔ£¬ÄÜÕýÈ·ÔËÐУ¬Óм¸ÐгÌÐòÒ²ÊÇÌ×Óᣲ»¿É·ñÈÏ£¬À뿪ÕâЩ²Î¿¼×ÊÁÏ£¬ÎÒ²»ÄܶÀÁ¢Íê³ÉÕâ¸öʵÑ飬±Ï¾¹ÎÒûÓкÏ×÷»ï°é¡£ËùÒÔ£¬×ÔÎÒÆÀ¶¨Îª85·Ö¡£
- 20 -