基础班
1.某地质学院的学生对一种矿石进行观察和鉴别: 甲判断:不是铁,也不是铜。 乙判断:不是铁,而是锡。 丙判断:不是锡,而是铁。
经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。你知道三人中谁是对的,谁是错的,谁是只对一半的吗?
解:丙全说对了,甲说对了一半,乙全说错了。先设甲全对,推出矛盾后,再设乙全对,又推出矛盾,则说明丙全对,甲说对了一半,乙全说错了。
2.数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌。”结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁得铜牌?
解:小华得金牌,小强得银牌,小明得铜牌。
(1)若小明得金牌,小华一定“不得金牌”,这与“老师只猜对了一个”相矛盾,不合题意。
(2)若小华得金牌,那么“小明得金牌”与“小华不得金牌”这两句都是错的,那么“小强不得铜牌”应是正确的,那么小强得银牌,小明得铜牌。
3.一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问。四人分别供述如下: 甲说:“罪犯在乙、丙、丁三人之中。” 乙说:“我没有做案,是丙偷的。” 丙说:“在甲和丁中间有一人是罪犯。” 丁说:“乙说的是事实。”
经过充分的调查,证实这四人中有两人说了真话,另外两人说的是假话。 同学们,请你做一名公正的法官,对此案进行裁决,确认谁是罪犯?
解:乙和丁是盗窃犯。如果甲说的是假话,那么剩下三人中有一人说的也是假话,另外两人说的是真话。可是乙和丁两人的观点一致,所以在剩下的三人中只能是丙说了假话,乙和丁说的都是真话。即“丙是盗窃犯”。这样一来,甲说的也是对的,不是假话。这样,前后就产生了矛盾。所以甲说的不可能是假话,只能是真话。同理,剩下的三人中只能是丙说真话。乙和丁说的是假话,即丙不是罪犯,乙是罪犯。又由甲所述为真话,即甲不是罪犯。再由丙所述为真话,即丁是罪犯。
4.小王、小张、小李三人在一起,其中一位是工人,一位是战士,一位是大学生。现在知道:小李比战士年龄大,小王和大学生不同岁,大学生比小张年龄小。那么三人各是什么职业? 解:小李是大学生,小王是战士,小张是工人.
5.甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?
解:甲是日本人,乙是中国人,丙是英国人。
6.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。 (1)车工只和电工下棋;
(2)王、陈两位师傅经常与木工下棋; (3)徐师傅与电工下棋互有胜负; (4)陈师傅比钳工下得好。
问:徐、王、陈、赵四位师傅各从事什么工种?
徐是车工,王是钳工,陈是电工,赵是木工。
解:提示:由(2)(3)(1)可画出右表:
提高班
1.某地质学院的学生对一种矿石进行观察和鉴别: 甲判断:不是铁,也不是铜。 乙判断:不是铁,而是锡。 丙判断:不是锡,而是铁。
经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。你知道三人中谁是对的,谁是错的,谁是只对一半的吗?
解:丙全说对了,甲说对了一半,乙全说错了。先设甲全对,推出矛盾后,再设乙全对,又推出矛盾,则说明丙全对,甲说对了一半,乙全说错了。
2.数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌。”结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁得铜牌?
解:小华得金牌,小强得银牌,小明得铜牌。
(1)若小明得金牌,小华一定“不得金牌”,这与“老师只猜对了一个”相矛盾,不合题意。
(2)若小华得金牌,那么“小明得金牌”与“小华不得金牌”这两句都是错的,那么“小强不得铜牌”应是正确的,那么小强得银牌,小明得铜牌。
3.一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问。四人分别供述如下: 甲说:“罪犯在乙、丙、丁三人之中。” 乙说:“我没有做案,是丙偷的。” 丙说:“在甲和丁中间有一人是罪犯。” 丁说:“乙说的是事实。”
经过充分的调查,证实这四人中有两人说了真话,另外两人说的是假话。 同学们,请你做一名公正的法官,对此案进行裁决,确认谁是罪犯?
解:乙和丁是盗窃犯。如果甲说的是假话,那么剩下三人中有一人说的也是假话,另外两人说的是真话。可是乙和丁两人的观点一致,所以在剩下的三人中只能是丙说了假话,乙和丁说的都是真话。即“丙是盗窃犯”。这样一来,甲说的也是对的,不是假话。这样,前后就产生了矛盾。所以甲说的不可能是假话,只能是真话。同理,剩下的三人中只能是丙说真话。乙和丁说的是假话,即丙不是罪犯,乙是罪犯。又由甲所述为真话,即甲不是罪犯。再由丙所述为真话,即丁是罪犯。
4.小王、小张、小李三人在一起,其中一位是工人,一位是战士,一位是大学生。现在知道:小李比战士年龄大,小王和大学生不同岁,大学生比小张年龄小。那么三人各是什么职业? 解:小李是大学生,小王是战士,小张是工人.
5.甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?
解:甲是日本人,乙是中国人,丙是英国人。
6.徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。 (1)车工只和电工下棋;
(2)王、陈两位师傅经常与木工下棋; (3)徐师傅与电工下棋互有胜负; (4)陈师傅比钳工下得好。
问:徐、王、陈、赵四位师傅各从事什么工种?
徐是车工,王是钳工,陈是电工,赵是木工。 解:提示:由(2)(3)(1)可画出右表:
第十讲 植树问题
基础班
1.有一条2000米的公路,在路一边每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根? 答:41根.2000÷50+1=41(根)
2.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?
答:248棵.(1000÷8-1)×2=124×2=248(棵)
3.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株? 答:150÷3=50(棵).
4.一根木料截成5段要16分钟,如果每截一次的时间相等,那么截7段要几分钟? 答:每截一次需要:16÷(5-1)=4(分钟),截成7段要4×(7-1)=24(分钟).
5.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?
答:每一层楼梯的台阶数为:48÷(4-1)=16(级),从1楼到6楼共走:6-1=5(段)楼梯,16×5=80(级)台阶.
6.马路的每边相隔7米有一棵国槐,小军乘无轨电车3分看到马路的一边有国槐151棵,无轨电车每小时行多少千米?
答:21千米.先求出无轨电车3分行驶的路程,再求每分行驶的路程,最后求每小时行的路程.
7×(151-1)÷3×60÷1000 或 7×(151-1)×(60÷3)÷1000 =7×150÷3×60÷1000 =7×150×20÷1000 =21(千米) =21(千米)
提高
1.有一条2000米的公路,在路一边每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根? 答:41根.2000÷50+1=41(根)
2.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?
答:248棵.(1000÷8-1)×2=124×2=248(棵)
3.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株? 答:150÷3=50(棵).
4.一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?
答:火车的总长度为:5×20+1×(20-1)=119(米),火车所行的总路程:119+81=200(米),所需要
的时间:200÷20=10(分钟) 答:需要10分钟
5.一根木料截成5段要16分钟,如果每截一次的时间相等,那么截7段要几分钟? 答:每截一次需要:16÷(5-1)=4(分钟),截成7段要4×(7-1)=24(分钟).
6.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?
答:每一层楼梯的台阶数为:48÷(4-1)=16(级),从1楼到6楼共走:6-1=5(段)楼梯,16×5=80(级)台阶.
7.马路的每边相隔7米有一棵国槐,小军乘无轨电车3分看到马路的一边有国槐151棵,无轨电车每小时行多少千米?
答:21千米.先求出无轨电车3分行驶的路程,再求每分行驶的路程,最后求每小时行的路程.
7×(151-1)÷3×60÷1000 =7×150÷3×60÷1000 =21(千米)
或 7×(151-1)×(60÷3)÷1000 =7×150×20÷1000
=21(千米)
第十三讲 数字谜
基础班
1.在下列算式的空格内,各填入一个合适的数字,使算式成立:
答案:(1)
(2)
2.下面各题中的每一个汉字代表一个数字,不同的汉字代表不同的数字,相同的汉字代表相同的数字。当它们各代表什么数字时,以下各算式都成立?