生物化学王境岩第三版课后习题答案

真核生物的mRNA都是单顺反子,5ˊ端有帽子(cap)结构,然后依次是5ˊ非编码区、编码区、3ˊ非编码区、3ˊ端为聚腺苷酸(poly(A))尾巴,其分子内有时还有极少甲基化的碱基。

4.DNA双螺旋结构类型有那些基本要点?这些特点能解释哪些基本的生命现象? 答:DNA双螺旋结构模型的基本要点有:

(1)两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手螺旋。 (2)嘌呤与嘧啶位于双螺旋的内侧,磷酸与核糖在外侧,彼此通过3’,5’-磷酸二酯键相连接,形成DNA分子的骨架,碱基平面与纵轴垂直,糖环平面则与纵轴平行。多核苷酸链的方向取决于核苷酸间磷酸二酯键的走向,习惯上以C3’-C5’为正向。两条链配对偏向一侧,形成一条大购和一条小沟。

(3)双螺旋的平均直径为2nm,两个相邻的碱基对之间的高度,即碱基堆积距离为0.34nm,两个核苷酸之间的夹角为36°,沿中心轴每旋转一周有10个核苷酸,每一转的高度(即螺距)为3.4nm。

(4)两条核苷酸依靠彼此碱基之间形成的氢键相联系而结合在一起。

(5)碱基在一条链上的排列顺序不受任何限制。但根据碱基配对原则,当一条多核苷酸链的序列彼此确定后,即可决定另一互补的序列。

解释生命活动:双螺旋DNA是储存遗传信息的分子,通过半保留复制,储存遗传信息,通过转录和翻译表达出生命活动所需信息(蛋白质和酶)。

5.应用DNA晶体X射线衍射技术分析DNA对Watson-Crik模型有何修正?比较A-DNA、B-DNA、Z-DNA的主要特点。 答:(1)Watson-Crick模型认为每一螺周含有10个碱基对,所以两个核苷酸之间夹角是36°。但在Dickerson的十二聚体中,两个碱基间的夹角可由28°至42°不等,实际平均每一螺周含10.4个碱基对。分子大小的各参数也随序列不同而有变动。

(2)Dikerson所研究的十二聚体结构中,组成碱基对的两个碱基分布并非在同一平面上,而是碱基对沿长轴旋转一定角度,从而使碱基对的形状像螺旋桨叶片的样子,故称螺旋桨状扭曲,这种结构可提高碱基堆积力,使DNA结构更稳定。 A-DNA、B-DNA、Z-DNA的主要特点: A型B型 Z型 外形 粗短 适中 螺旋方向 螺旋直径 碱基轴升 碱基夹角

细长

右手 右手 左手 2.55nm 2.37 1.84nm 0.23nm 0.34 0.38nm

32.7° 34.6° 60°(1)

每圈碱基数 11 10.4 12 螺距 2.53nm 3.54nm 4.56 轴心与碱基对 不穿过碱基对 碱基倾角 糖环折叠

穿过碱基对 不穿过碱基对

嘧啶C2’内式,嘌呤C3’内式

19° 1° 9° C3’内式 C2’内式

糖苷键构象 反式 反式 嘧啶反式,嘌呤顺式

大沟 很狭、很深 很宽、较深 平坦 小沟 很宽、浅 狭、深 较狭、很深

(1)注:Z-DNA的嘌呤和嘧啶核苷酸交替出现顺反式,故以二个核苷酸为单位,转角为60°

6.如果人体有1014个细胞,每一细胞DNA含量为6.4×109bp,试计算一下人体DNA的总长度为多少米?它相当于地球到太阳的距离(2.2×109 km)之几倍?[2.2×1014km,100倍] 解:6.4×109bp×0.34nm×1014个=2.2×1014m=2.2×1011km 2.2×1011÷2.2×109km=100倍。

7.何谓H-DNA?它有何生物学意义? 答:当DNA的一段多聚嘧啶核苷酸或多聚嘧啶核苷酸组成镜像重复时,可折回产生H-DNA。由于这种结构形成分子内三螺旋时胞嘧啶需发生H+化,故称为H-DNA。H-DNA存在于基因调控区和其他重要区域,从而显示出它具有重要生物学意义。实验表明,启动子的S1核酸酶敏感区存在一些短的、同向或镜像重复的聚嘧啶-嘌呤区,该区域可以形成H-DNA,因而产生可被S1酶消化的单链结构。

8.何谓Hoogsteen碱基对?它与Watson-Crick碱基对有何不同?

答:Hoogsteen于1963年首先描述了三股螺旋螺旋结构。在三股螺旋中,通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合。第三股的碱基可与Watson-Crick碱基对中的嘌呤碱形成Hoogsteen配对。Hoogstecn模型,即第三个碱基以A或T与A =T碱基对中的A配对;G或C与G≡C碱基对中的G配对,C必须质子化,以提供与G的N7结合的氢键供体,并且它与G配对只形成两个氢键(图13-10)。

9.病毒DNA有哪些种类?为什么病毒DNA的种类繁多、结构各异?

答:动物病毒DNA通常是环状双链或线型双链。前者如乳头瘤病毒、多瘤病毒、杆状病毒和嗜肝DNA病毒等。后者如痘病毒、虹彩病毒、庖疹病毒和腺病毒的DNA。痘病毒nNA的末端很特别,是封闭的,形成突环〔loop )。微小病毒科的病毒,如小鼠微小病毒(Minute virus of mice, MVM),却是线型单链DNA(linear single-stranded DNA),病毒粒子内正负链数量不同,末端常形成发夹结构。

植物病毒基因组大多是RNA, DNA较少见。少数植物病毒DNA或是环状双链,或是环状单链。

噬菌体DNA多数是线型双链,如λ噬菌体、T系列噬菌体,也有为环状双链如覆盖噬菌体PM2,或环状单链如微噬菌体φX174和丝杆噬菌体fd和M13。

10.细菌拟核的主要结构特点是什么?

答:拟核(nucleoid )约占细胞体积的三分之一,在细胞内紧密缠绕形成致密的小体。细菌的基因组为双链环状DNA,其上结合碱性蛋自和少量RNA,组成许多突一环(图13 - 15)。其DNA分子长度大约是其菌体长度的1000倍,所以必须以一定的组织结构压缩在细胞内。

11. DNA绕在组蛋白八聚体核心构成一个核小体,其△L0平均为-1.2,核小体链并无扭曲张力,为什么?试计算此DNA的超螺旋密度(每圈碱基对按10计算)。[ λ=0.06] 解:每个核小体重复单位DNA约占200bp,L0=200/10=20,λ=△L0/ L0=0.06

?

第19章 代谢总论

⒈怎样理解新陈代谢?

答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。它是由多酶体系协同作用的化学反应网络。新陈代谢包括分解代谢和合成代谢两个方面。 新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。②将外界引入的营养物质转变为自身需要的结构元件。③将结构元件装配成自身的大分子。④形成或分解生物体特殊功能所需的生物分子。⑤提供机体生命活动所需的一切能量。

⒉能量代谢在新陈代谢中占何等地位?

答:生物体的一切生命活动都需要能量。生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。如果没有能量来源生命活动也就无法进行.生命也就停止。

⒊在能量储存和传递中,哪些物质起着重要作用?

答:在能量储存和传递中, ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。

⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?

答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。 分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。酶的数量不只受到合成速率的调节,也受到降解速率的调节。合成速率和降解速率都备有一系列的调节机制。在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。

细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。

多细胞生物还受到在整体水平上的调节。这主要包括激素的调节和神经的调节。高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。人类还受到高级神经活动的调节。

除上述各方面的调节作用外,还有来自基因表达的调节作用。

代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。

⒌ 从“新陈代谢总论”中建立哪些基本概念?

答:从“新陈代谢总论”中建立的基本概念主要有:代谢、分解代谢、合成代谢、递能作用、基团转移反应、氧化和还原反应、消除异构及重排反应、碳-碳键的形成与断裂反应等。

⒍ 概述代谢中的有机反应机制。

答:生物代谢中的反应大体可归纳为四类,即基团转移反应;氧化-还原反应;消除、异构化和重排反应;碳-碳键的形成或断裂反应。这些反应的具体反应机制包括以下几种:酰基转移,磷酰基转移,葡糖基基转移;氧化-还原反应;消除反应,分子内氢原子的迁移(异构化反应),分子重排反应;羟醛综合反应,克莱森酯综合反应,β-酮酸的氧化脱羧反应。

⒎举列说明同位素示踪法和波谱法在生物化学研究中的重要作用。

答:同位素示踪法和波谱法生物化学中研究新陈代谢的两种重要方法。

同位素示踪法不改变被标记化合物的化学性质,已成为生物化学以及分子生物学的研完中一种重要的必不可少的常规先进技术。如:1945年 David Shemin和 David Rittenberg首先成功地用14C 和15N标记的乙酸和甘氨酸怔明了血红素分子中的全部碳原子和氮原子都来源于乙酸利甘氨酸; 胆固醇分子中碳原子的来源也是用同样的同位空示踪法得到闸明的。

核磁共振波谱法对于样品不加任何破坏,因此,在生物体的研究得到广泛的应用。例如 在生物化学、生理学以及医学等方面都广泛位用核磁共振波谱技术对生活状态的人体进行研究,取得了重要的研究成果,其中最为人知的实验是1986年用核磁共振波谱法对人体前臂肌肉在运动前和运动后的比较研究。

第20章 生物能学

⒈就某方面而言,热力学对生物化学工作者更为重要,为什么?

答:生物能学是深人理解生物化学特别是理解主物机体新陈代谢规律不可缺少的基本知识。它是生物化学中涉及生活细胞转移和能量利用的基本间题。生物能学完全建立在热力学的基础上,因此,从这个角度看,热力学对生物化学工作者更为重要。

⒉考虑下面提法是否正确?

①在生物圈内,能量只是从光养生物到异养生物,而物质却能在这两类生物之间循环。 ②生物机体可利用体内较热部位的热能传递到较冷的部位而做功。 ③ 当一个系统的熵值降低到最低时,该系统处于热力学平衡状态。 ④当Δ G0’值为0.0时,说明反应处于平衡状态。 ⑤ ATP水解成ADP的反应,Δ G0’约等于Δ G0。 答:①-是, ②- 非,③-非 ,④- 非,⑤-非

⒊怎样可判断一个化学反应能够自发进行?

答:一个化学反应的自由能是否降低是判断它是否可以自发进行的标准。只有自由能变化为负值的化学反应,才能自发进行。

⒋怎样判断一个化学反应进行的方向?当反应物和产物的起始浓度都为1mol时,请判断下列反应的进行方向。(参看表20-3中的数据) 。 ①磷酸肌酸+ADP ????→ ATP+肌酸

② 磷酸烯醇式丙酮酸+ADP ????→丙酮酸+ATP

③葡萄糖6-磷酸+ADP ????→ATP+葡萄糖

答:一个化学反应是从总能量高的体系向总能量低的体系变化,即可根据化学反应式两边体系总能量的大小来判断其方向。

根据表20-3中的数据:①-向右, ②-向右 ,③-向左。

⒌ 解释ATP的γ -磷酸基团转运到葡萄糖6-磷酸的磷酸脂键(Δ G0’=13.8kJ/mol)上,一般情况下,为什么在热力学上可行?逆反应是否可行?

答:由于ATP的γ -磷酸基团的Δ G0’=32.2kJ/mol大于葡萄糖6-磷酸的磷酸脂键的Δ G0’=13.8kJ/mol,因此,一般情况下,ATP的γ -磷酸基团转运到葡萄糖6-磷酸的磷酸脂键上在热力学上可行的。在某些情况下,当该反应的ΔG值为正值时,该反应的逆反应可行。

⒍从ATP的结构特点说明ATP在能量传递中的作用。

联系客服:779662525#qq.com(#替换为@)