第1章 糖类
1.环状己醛糖有多少个可能的旋光异构体,为什么?[25=32]
解:考虑到C1、C2、C3、C4及αβ两种构型,故总的旋光异构体为2的4次方乘以2=32个。
2.含D-吡喃半乳糖和D-吡喃葡萄糖的双糖可能有多少个异构体(不包括异头物)?含同样残基的糖蛋白上的二糖链将有多少个异构体?[20;32]
解:一个单糖的C1可以与另一单糖的C1、C2、C3、C4、C6形成糖苷键,于是α-D-吡喃半乳基-D-吡喃葡萄糖苷、β-D-吡喃半乳基-D-吡喃葡萄糖苷、α-D-吡喃葡萄糖基-D-吡喃半乳糖苷、β-D-吡喃葡萄糖基-D-吡喃半乳糖苷各有5种,共5×4=20个异构体。
糖蛋白上的二糖链其中一个单糖的C1用于连接多肽,C2、C3、C4、C6用于和另一单糖的C1形成糖苷键,算法同上,共有4×4=16个,考虑到二糖与多肽相连时的异头构象,异构体数目为16×2=32个。
3.写出β-D-脱氧核糖、α-D-半乳糖、β- L-山梨糖和β-D-N-乙酰神经氨酸(唾液酸)的Fischer投影式,Haworth式和构象式。
4.写出下面所示的(A).(B)两个单糖的正规名称(D/L,α/β,f/p),指出(C).(D)两个结构用RS系统表示的构型(R/S)
[A、α- D-f-Fru;B、α-L- p-Glc; C、R; D、S]
5. L7-葡萄糖的α和β异头物的比旋[αD20]分别为+112.2°和+18.70°。当α-D-吡喃葡糖晶体样品溶于水时,比旋将由+112.2°降至平衡值+52.70°。计算平衡混合液中α和β异头物的比率。假设开链形式和呋喃形式可忽略。[α异头物的比率为36.5%,β异头物为63.5%] 解:设α异头物的比率为x,则有112.2x+18.7(1-x)=52.7,解得x=36.5%,于是(1-x)= 63.5%。 6.将500 mg糖原样品用放射性氰化钾(K14CN)处理,被结合的14CN—正好是0.193μmol,另一500 mg同一糖原样品,用含3% HCl的无水甲醇处理,使之形成还原末端的甲基葡糖苷。然后用高碘酸处理这个还原端成为甲基葡糖苷的糖原,新产生的甲酸准确值是347μmol。计算(a)糖原的平均相对分子质量.(b)分支的程度(分支点%)[(a)2.59×106; (b)11.24%] 解:(a)Mr=0.5/(0.193×10-6)= 2.59×106
(b)347×10-6×163/0.5=11.3% 7. D-葡萄糖在31℃水中平衡时,α-吡喃葡糖和β-吡喃葡糖的相对摩尔含量分别为37.3 %和62.7%。计算D-葡萄糖在31℃时由α异头物转变为β异头物的标准自由能变化。气体常数R为8.314J /molK。[ΔG0= -1. 31kJ /mol]
解:ΔG0= -RTln(c2/c1)=-8.314×300×ln(62.7/37.3)=-1.30 kJ /mol
8.竹子系热带禾本科植物,在最适条件下竹子生长的速度达0.3 m/d高,假定竹茎几乎完全由纤维素纤维组成,纤维沿生长方向定位。计算每秒钟酶促加入生长着的纤维素链的单糖残基数目。纤维素分子中每一葡萄糖单位约长0.45 nm。[7800残基/s] 解:[0.3/(24×3600)]/0.45×10-9=7800残基/s
9.经还原可生成山梨醇(D-葡萄醇)的单糖有哪些?[L-山梨糖;D-葡萄糖;L-古洛糖;D-果糖]
10.写出麦芽糖(α型)、纤维二糖(β型)、龙胆糖和水苏糖的正规(系统)名称的简单形式,并指出其中哪些(个)是还原糖,哪些(个)是非还原糖。 解:麦芽糖(α型):Glcα(1→4)Glc 纤维二糖(β型):Glcβ(1→4)Glc 龙胆糖:Glcβ(1→6)Glc
水苏糖:Galα(1→6)Galα(1→6)Glc(α1?→β2)Fru
11.纤维素和糖原虽然在物理性质上有很大的不同,但这两种多糖都是1-4连接的D-葡萄糖聚合物,相对分子质量也相当,是什么结构特点造成它们在物理性质上的如此差别?解释它们各自性质的生物学优点。
答:糖原是人和动物餐间以及肌肉剧烈运动时最易动用的葡萄糖贮库。纤维素是植物的结构多糖,是他们的细胞壁的主要组成成分。
12.革兰氏阳性细菌和阴性细菌的细胞壁在化学组成上有什么异同?肽聚糖中的糖肽键和糖蛋白中的糖肽键是否有区别?
答:肽聚糖:革兰氏阳性细菌和阴性细菌共有;磷壁酸:革兰氏阳性细菌特有;脂多糖:革兰氏阴性细菌特有。两种糖肽键有区别:肽聚糖中为NAM的C3羟基与D-Ala羧基相连;糖蛋白中是糖的C1羟基与多肽Asnγ-氨基N或Thr/Ser/Hyl/Hyp羟基O相连。
13.假设一个细胞表面糖蛋白的一个三糖单位在介导细胞与细胞粘着中起关键作用。试设计一个简单试验以检验这一假设。[如果糖蛋白的这个三糖单位在细胞相互作用中是关键的,则此三糖本身应是细胞粘着的竞争性抑制剂]
14.糖蛋白中N-连接的聚糖链有哪些类型?它们在结构上有什么共同点和不同点?
答:(1)复杂型( complex type)这类N-糖链,除三甘露糖基核心外,不含其他甘露糖残基。还原端残基为GlcNAcβ1→的外链与三甘露糖基核心的两个α-甘露糖残基相连,在三类N-糖链中复杂型结构变化最大。
(2)高甘露糖型(high-mannose type)此型N-糖链除核心五糖外只含α-甘露糖残基。 (3)杂合型(hybrid type )此型糖链具有复杂型和高甘露糖型这两类糖链的结构元件。
15.举出两个例子说明糖蛋白寡糖链的生物学作用。
答:(1)糖链在糖蛋白新生肽链折叠和缔合中的作用; (2)糖链影响糖蛋白的分泌和稳定性。(例见教材P60~P61)
16.写出人ABH血型抗原决定簇的前体结构,指出A抗原、B抗原和O抗原(H物质)之间的结构关系,[答案见表1-9]
17.具有重复二糖单位,GlcUAβ(1→3)GlcNA,而单位间通过β(1→4)连接的天然多糖是什么?[透明质酸]
18.糖胺聚糖如硫酸软骨素,其生物功能之一与该分子在水中所占的体积远比脱水时大这一生质有关。为什么这些分子在溶液中所占体积会这样大?
答:由于分子表面含有很多亲水基团,能结合大量的水,形成透明的高粘性水合凝胶,如一
个透明质酸(HA)分子在水中将占据1000~10000倍于自身体积的空间。
19.举例说明内切糖苷酶和外切糖苷酶在聚糖链结构测定中的作用。(见教材P73)
20.一种三糖经β-半乳糖苷酶完全水解后,得到D-半乳糖和D-葡萄糖,其比例为2:1,将原有的三糖用NaBH4还原,继而使其完全甲基化和酸水解,然后再进行一次NaBH4还原,最后用醋酸酐乙酸化,得到二种产物:①2,3,4,6-四甲基1,5二乙酰基-半乳糖醇,② 2.3.4-三甲基-1,5,6-三乙酸基-半乳糖醇,③1.2.3.5.6-五甲基-4-乙酰基-山梨醇。分析并写出此三糖的结构。[D -Galβ(1→6)D-Galβ(1→4)D-Glc]
第2章 脂质
习题
1.天然脂肪酸在结构上有哪些共同的特点?
答:天然脂肪酸通常具有偶数碳原子,链长一般为12-22碳。脂肪酸可分为饱和、单不饱和与多不饱和脂肪酸。不饱和脂肪酸的双键位置,有一个双键几乎总是处于C9-C10之间(△9),并且一般是顺式的。
2.(a)由甘油和三种不同的脂肪酸(如豆蔻酸、棕榈酸和硬脂酸)可形成多少种不同的三酰甘油(包括简单型和混合型在内)?(b)其中定量上不同组成的三酰甘油可有多少种?[(a) 27种;(b) 10种] 解:(a) 33=27种; (b) 3×3+1=10种
3.(a)为什么饱和的18碳脂肪酸——硬脂酸的熔点比18碳不饱和脂肪酸——油酸的熔点高? (b)干酪乳杆菌产生的乳杯菌酸(19碳脂肪酸)的熔点更接近硬脂酸的熔点还是更接近油酸的熔点?为什么?
答:(a)油酸有一个△9顺式双键,有序性校差;而硬脂酸有序性高,故熔点也高; (b)硬脂酸。因为熔点随链长的增加而增加。
4.从植物种子中提取出1g油脂,把它等分为两份,分别用于测定该油脂的皂化值和碘值。测定皂化值的一份样品消耗KOH 65 mg,测定碘值的一份样品消耗I2 510 mg.试计算该油脂的平均相对分子质量和碘值。[1292;102] 解:Mr=(3×56×1000)/(2×65)=1292
I2 值=0.51×100/0.5=102 (100g油脂卤化时吸收I2的克数)
5.某油脂的碘值为68,皂化值为210。计算每个油脂分子平均含多少个双健。[2个] 解:100g油脂的物质的量=(210×100)/(3×56×1000)=0.125mol 平均双键数=(68/254)/0.125≈2个
6. (a)解释与脂质过氧化育关的几个术语:自由基、活性氧、自由基链反应和抗氧化剂;(b)为什么PUFA容易发生脂质过氧化? 答:(a)
自由基:自由基也称游离基,是指含有奇数价电子并因此在一个轨道上具有一个未(不)成对
电子(unpaired electron)的原子或原子团。
活性氧:氧或含氧的高反应活性分子,如O-2、?OH、H2O2、ˉO2 (单线态氧)等统称为活性氧。
自由基链反应:自由基化学性质活泼,能发生抽氢、歧化、化合、取代、加成等多种反应,但是自由基反应的最大特点是倾向于进行链「式」反应〔chain reaction ) ,链反应一般包括3个阶段:引发、增长和终止。 抗氧化剂:凡具有还原性而能抑制靶分子自动氧化即抑制自由基链反应的物质称为抗氧化剂(antioxidant ) 。
(b)多不饱和脂肪酸(PUFA)中的双键具有潜在的还原性,容易发生过氧化作用。
7.为解决甘油磷脂构型上的不明确性,国际生物化学命名委员会建议采取立体专一编号命名原则。试以磷酸甘油为例说明此命名原则。
8.写出下列化合物的名称:
(a)在低pH时,携带一个正净电荷的甘油磷脂;(b)在中性pH时携带负净电荷的甘油磷脂;(c)在中性pH时,净电荷为零的甘油磷脂。
答:(a)磷脂酰胆碱、磷脂酰乙醇胺;(b)磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰甘油,-1;双磷脂酰甘油(心磷脂),-2;(c) 磷脂酰胆碱、磷脂酰乙醇胺。
9.给定下列分子成分:甘油、脂肪酸、磷酸、长链醇和糖。试问(a)哪两个成分在蜡和鞘脂脂中都存在?(b)哪两个成分在脂肪和磷脂酰胆碱中都存在?(c)哪些(个)成分只在神经节苷脂而不在脂肪中存在?[(a)脂肪酸,长链醇;(b)甘油,脂肪酸;(c)糖,长链醇]
10.指出下列膜脂的亲水成分和疏水成分:(a) 磷脂酰乙醇胺;(b)鞘磷脂;(c) 半乳糖基脑苷脂;(d)神经节苷脂;(e)胆固醇。
答:(a)乙醇胺;脂肪酸
(b)磷酰胆碱或磷酰乙醇胺;脂肪酸和烃链 (c)半乳糖;脂肪酸和烃链
(d)连有唾液酸的寡糖链;脂肪酸和烃链 (e)C3羟基;甾核和C17烷烃侧链
11. (a)造成类固醇化合物种类很多的原因是什么?(b)人和动物体内胆固醇可转变为哪些具有重要生理意义的类固醇物质?
答:(a)①环上的双键数日和位置不同;②取代基的种类、数目、位置和取向(αβ)不同;③环和环稠合的构型(顺反异构)不同。
(b)动物中从胆固醇衍生来的类固醇包括5类激素:雄激素、雌激素、孕酮、糖皮质激素和盐皮质激素,维生素D和胆汁酸。
12.胆酸是人胆汁中发现的A-B顺式类固醇(图2-18) 。请按图2-15所求椅式构象画出胆酸的构象式,并以直立键或平伏键标出 C3, C7和C12上3个羟基。
13.一种血浆脂蛋白的密度为l.08g/cm3,载脂蛋白的平均密度为1.35 g/cm3,脂质的平均密度为0.90 g/cm3。问该脂蛋白中载脂蛋白和脂质的质量分数是多少?[48.6%载脂蛋白,51.4%脂质]
解:设载脂蛋白的体积分数是x,则有1.35x+0.90(1-x)=1.08,解得x=0.4 于是质量分数为(0.4×1.35)/[ 0.4×1.35+(1-0.4)×0.90]=0.5
14.一种低密度脂蛋白(LDL含apoB- 100(M为500000)和总胆固醇(假设平均Mr为590)的质量分数分别为25%和50%。试汁算apo B- 100与总胆固醇的摩尔比[1:1695] 解:设摩尔比为1/x,则有500000/590x=25/50,解得x=1695
15.用化学方法把鞘磷脂与磷脂酰胆碱区分开来。
第3章 氨基酸 习题
1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1] 表3-1 氨基酸的简写符号 名称 三字母符号 单字母符号 名称
三字母符号 单字母符号
丙氨酸(alanine) Ala A 亮氨酸(leucine) Leu L 精氨酸(arginine) Arg R 赖氨酸(lysine) Lys K
天冬酰氨(asparagines) Asn N 甲硫氨酸(蛋氨酸)(methionine) Met 天冬氨酸(aspartic acid) Asp D 苯丙氨酸(phenylalanine) 半胱氨酸(cysteine) Cys C 脯氨酸(praline) Pro P 谷氨酰氨(glutamine) Gln Q 丝氨酸(serine) 谷氨酸(glutamic acid) Glu E 苏氨酸(threonine) 甘氨酸(glycine) Gly G 色氨酸(tryptophan)Trp 组氨酸(histidine) His H 酪氨酸(tyrosine) Tyr 异亮氨酸(isoleucine) Ile I 缬氨酸(valine) Asn和/或Asp Asx B Gln和/或Glu Gls Z
Ser S
Thr T W Y Val V
Phe F
M
2、计算赖氨酸的εα-NH3+20%被解离时的溶液PH。[9.9] 解:pH = pKa + lg20% pKa = 10.53 (见表3-3,P133) pH = 10.53 + lg20% = 9.83
3、计算谷氨酸的γ-COOH三分之二被解离时的溶液pH。[4.6] 解:pH = pKa + lg2/3 pKa = 4.25
pH = 4.25 + 0.176 = 4.426
4、计算下列物质0.3mol/L溶液的pH:(a)亮氨酸盐酸盐;(b)亮氨酸钠盐;(c)等电亮氨酸。[(a)约1.46,(b)约11.5, (c)约6.05]
5、根据表3-3中氨基酸的pKa值,计算下列氨基酸的pI值:丙氨酸、半胱氨酸、谷氨酸和精氨酸。[pI:6.02;5.02;3.22;10.76] 解:pI = 1/2(pKa1+ pKa2)
pI(Ala) = 1/2(2.34+9.69)= 6.02 pI(Cys) = 1/2(1.71+10.78)= 5.02
pI(Glu) = 1/2(2.19+4.25)= 3.22 pI(Ala) = 1/2(9.04+12.48)= 10.76
6、向1L1mol/L的处于等电点的甘氨酸溶液加入0.3molHCl,问所得溶液的pH是多少?如果加入0.3mol NaOH以代替HCl时,pH将是多少?[pH:2.71;9.23] 解:pH1=pKa1+lg(7/3)=2.71 pH2=pKa2+lg(3/7)=9.23
7、将丙氨酸溶液(400ml)调节到pH8.0,然后向该溶液中加入过量的甲醛,当所得溶液用碱反滴定至Ph8.0时,消耗0.2mol/L NaOH溶液250ml。问起始溶液中丙氨酸的含量为多少克?[4.45g]
8、计算0.25mol/L的组氨酸溶液在pH6.4时各种离子形式的浓度(mol/L)。[His2+为1.78×10-4,His+为0.071,His0为2.8×10-4]
解:由pH=pK1+lg(His2+/10-6.4)=pKr+lg(His+/His2+)=pK2+lg(His0/ His+) 得His2+为1.78×10-4,His+为0.071,His0为2.8×10-4
9、说明用含一个结晶水的固体组氨酸盐酸盐(相对分子质量=209.6;咪唑基pKa=6.0)和1mol/L KOH配制1LpH6.5的0.2mol/L组氨酸盐缓冲液的方法[取组氨酸盐酸盐41.92g(0.2mol),加入352ml 1mol/L KOH,用水稀释至1L]
10、为什么氨基酸的茚三酮反应液能用测压法定量氨基酸?
解:茚三酮在弱酸性溶液中与α-氨基酸共热,引起氨基酸氧化脱氨脱羧反映,(其反应化学式见P139),其中,定量释放的CO2可用测压法测量,从而计算出参加反应的氨基酸量。
11、L-亮氨酸溶液(3.0g/50ml 6mol/L HCl)在20cm旋光管中测得的旋光度为+1.81o。计算L-亮氨酸在6mol/L HCl中的比旋([a])。[[a]=+15.1o]
12、标出异亮氨酸的4个光学异构体的(R,S)构型名称。[参考图3-15]
13、甘氨酸在溶剂A中的溶解度为在溶剂B中的4倍,苯丙氨酸在溶剂A中的溶解度为溶剂B中的两倍。利用在溶剂A和B之间的逆流分溶方法将甘氨酸和苯丙氨酸分开。在起始溶液中甘氨酸含量为100mg ,苯丙氨酸为81mg ,试回答下列问题:(1)利用由4个分溶管组成的逆流分溶系统时,甘氨酸和苯丙氨酸各在哪一号分溶管中含量最高?(2)在这样的管中每种氨基酸各为多少毫克?[(1)第4管和第3管;(2)51.2mg Gly+24mg Phe和38.4mgGly+36mg Phe]
解:根据逆流分溶原理,可得:
对于Gly:Kd = CA/CB = 4 = q(动相)/p(静相) p+q = 1 = (1/5 + 4/5) 4个分溶管分溶3次:(1/5 + 4/5)3=1/125+2/125+48/125+64/125 对于Phe:Kd = CA/CB = 2 = q(动相)/p(静相) p+q = 1 = (1/3 + 2/3) 4个分溶管分溶3次:(1/3 + 2/3)3=1/27+6/27+12/27+8/27
故利用4个分溶管组成的分溶系统中,甘氨酸和苯丙氨酸各在4管和第3管中含量最高,其中:
第4管:Gly:64/125×100=51.2 mg Phe:8/27×81=24 mg
第3管:Gly:48/125×100=38.4 mg Phe:12/27×81=36 mg
14、指出在正丁醇:醋酸:水的系统中进行纸层析时,下列混合物中氨基酸的相对迁移率(假定水相的pH为4.5):(1)Ile, Lys; (2)Phe, Ser (3)Ala, Val, Leu; (4)Pro, Val (5)Glu, Asp; (6)Tyr, Ala, Ser, His.
[Ile> lys;Phe,> Ser;Leu> Val > Ala,;Val >Pro;Glu>Asp;Tyr> Ala>Ser≌His] 解:根据P151 图3-25可得结果。
15.将含有天冬氨酸(pI=2.98)、甘氨酸(pI=5.97)、亮氨酸(pI=6.53)和赖氨酸(pI=5.98)的柠檬酸缓冲液,加到预先同样缓冲液平衡过的强阳离交换树脂中,随后用爱缓冲液析脱此柱,并分别收集洗出液,这5种氨基酸将按什么次序洗脱下来?[Asp, Thr, Gly, Leu, Lys]
解:在pH3左右,氨基酸与阳离子交换树脂之间的静电吸引的大小次序是减刑氨基酸(A2+)>中性氨基酸(A+)>酸性氨基酸(A0)。因此氨基酸的洗出顺序大体上是酸性氨基酸、中性氨基酸,最后是碱性氨基酸,由于氨基酸和树脂之间还存在疏水相互作用,所以其洗脱顺序为:Asp, Thr, Gly, Leu, Lys。
第4章 蛋白质的共价结构 习题
1.如果一个相对分子质量为12000的蛋白质,含10种氨基酸,并假设每种氨基酸在该蛋白质分子中的数目相等,问这种蛋白质有多少种可能的排列顺序?[10100] 解:1012000/120=10100
2、有一个A肽,经酸解分析得知为Lys、His、Asp、Glu2、Ala以及Val、Tyr和两个NH3分子组成。当A肽与FDNB试剂反应后得DNP-Asp;当用羧肽酶处理后得游离缬氨酸。如果我们在实验中将A肽用胰蛋白酶降解时,得到两种肽,其中一种(Lys、Asp、Glu、Ala、Tyr)在pH6.4时,净电荷为零,另一种(His、Glu以及Val)可给除DNP-His,在pH6.4时,带正电荷。此外,A肽用糜蛋白酶降解时,也得到两种肽,其中一种(Asp、Ala、Tyr)在pH6.4时全中性,另一种(Lys、His、Glu2以及Val)在pH6.4时带正电荷。问A肽的氨基酸序列如何?[Asn-Ala-Tyr-Glu-Lys-His-Gln-Val] 解:1、N-末端分析:FDNB法得:Asp-; 2、C-末端分析:羧肽酶法得:-Val;
3、胰蛋白酶只断裂赖氨酸或精氨酸残基的羧基形成的肽键,得到的是以Arg和Lys为C-末端残基的肽断。酸水解使Asn→Asp+ NH4+,由已知条件(Lys、Asp、Glu、Ala、Tyr)可得:Asn-( )-( )-( )-Lys-( )-( )-Val; 4、FDNB法分析N-末端得DNP-His,酸水解使Gln→Glu+NH4+由已知条件(His、Glu、Val)可得:Asn-( )-( )-( )-Lys-His-Gln-Val;
5、糜蛋白酶断裂Phe、Trp和Tyr等疏水氨基酸残基的羧基端肽键。由题,得到的一条肽(Asp、Ala、Tyr)结合(3)、(4)可得该肽的氨基酸序列为:Asn-Ala-Tyr-Glu-Lys-His-Gln-Val
3、某多肽的氨基酸序列如下:Glu-Val-Lys-Asn-Cys-Phe-Arg-Trp-Asp-Leu-Gly-Ser-Leu-Glu- Ala-Thr-Cys-Arg-His-Met-Asp-Gln-Cys-Tyr-Pro-Gly-Glu_Glu-Lys。(1)如用胰蛋白酶处理,此多肽将产生几个肽?并解释原因(假设没有二硫键存在);(2)在pH7.5时,此多肽的净电荷是多少单位?说明理由(假设pKa值:α-COOH4.0;α- NH3+6.0;Glu和Asp侧链基
4.0;Lys和Arg侧链基11.0;His侧链基7.5;Cys侧链基9.0;Tyr侧链基11.0);(3)如何判断此多肽是否含有二硫键?假如有二硫键存在,请设计实验确定5,17和23位上的Cys哪两个参与形成?[(1)4个肽;(2)-2.5单位;(3)如果多肽中无二硫键存在,经胰蛋白酶水解后应得4个肽段;如果存在一个二硫键应得3个肽段并且个肽段所带电荷不同,因此可用离子交换层析、电泳等方法将肽段分开,鉴定出含二硫键的肽段,测定其氨基酸顺序,便可确定二硫键的位置]
4、今有一个七肽,经分析它的氨基酸组成是:Lys、Pro、Arg、Phe、Ala、Tyr和Ser。此肽未经糜蛋白酶处理时,与FDNB反应不产生α-DNP-氨基酸。经糜蛋白酶作用后,此肽断裂城两个肽段,其氨基酸组成分别为Ala、Tyr、Ser和Pro、Phe、Lys、Arg。这两个肽段分别与FDNB反应,可分别产生DNP-Ser和DNP-Lys。此肽与胰蛋白酶反应能生成两个肽段,它们的氨基酸组成分别是Arg、Pro和Phe、Tyr、Lys、Ser、Ala。试问此七肽的一级结构怎样?[它是一个环肽,序列为:-Phe-Ser-Ala-Tyr-Lys-Pro-Arg-] 解:(1)此肽未经糜蛋白酶处理时,与FDNB反应不产生α-DNP-氨基酸,说明此肽不含游离末端NH2,即此肽为一环肽;
(2)糜蛋白酶断裂Phe、Trp和Tyr等疏水氨基酸残基的羧基端肽键,由已知两肽段氨基酸组成(Ala、Tyr、Ser和Pro、Phe、Lys、Arg)可得:-( )-( )-Tyr-和-( )-( )-( )-Phe-; (3)由(2)得的两肽段分别与FDNB反应,分别产生DNP-Ser和DNP-Lys可知该两肽段的N-末端分别为-Ser-和-Lys-,结合(2)可得:-Ser-Ala-Tyr-和-Lys-( )-( )-Phe-; (4)胰蛋白酶专一断裂Arg或Lys残基的羧基参与形成的肽键,由题生成的两肽段氨基酸组成(Arg、Pro和Phe、Tyr、Lys、Ser、Ala)可得:-Pro-Arg-和-( )-( )-( )-( )-Lys; 综合(2)、(3)、(4)可得此肽一级结构为:-Lys-Pro-Arg-Phe-Ser-Ala-Tyr-
5、三肽Lys- Lys- Lys的pI值必定大于它的任何一个个别基团的pKa值,这种说法是否正确?为什么?[正确,因为此三肽处于等电点时,七解离集团所处的状态是C-末端COO-(pKa=3.0),N末端NH2(pKa≌8.0),3个侧链3(1/3ε- NH3+)(pKa=10.53),因此pI>最大的pKa值(10.53)]
6、一个多肽可还原为两个肽段,它们的序列如下:链
1
为
Ala-Cys-Phe-Pro-Lys-Arg-Trp-Cys-Arg- Arg-
Val-Cys;链2为Cys-Tyr-Cys-Phe-Cys。当用嗜热菌蛋白酶消化原多肽(具有完整的二硫键)时可用下列各肽:(1)(Ala、Cys2、Val);(2)(Arg、Lys、Phe、Pro);(3)(Arg2、Cys2、Trp、Tyr);(4)(Cys2、Phe)。试指出在该天然多肽中二硫键的位置。(结构如下图) S-S Ala-Cys-Phe-Pro-Lys-Arg-Trp-Cys-Arg-Arg-Val_Cys
S
S
Cys-Tyr-Cys-Phe-Cys
S-S
解:嗜热菌蛋白酶作用专一性较差,根据题中已知条件: (1)消化原多肽得到(Ala、Cys2、Val),说明链1在2位Cys 后及11位Val前发生
断裂,2位Cys与12位Cys之间有二硫键;
(2)由链1序列可得该肽段序列为:-Phe-Pro-Lys-Arg-; (3)由(1)(2)可知该肽段(Arg2、Cys2、Trp、Tyr)中必有一Cys来自链2,另一Cys为链1中8位Cys,即链1中8位Cys与链2中的一个Cys有二硫键;
(4)嗜热菌蛋白酶能水解Tyr、Phe等疏水氨基酸残基,故此肽(Cys2、Phe)来自链2,结合(3)中含Tyr,可知(3)中形成的二硫键为链1 8位Cys与链2中3位Cys与链2中3位Cys之间;(4)中(Cys2、Phe)说明链2中1位Cys与5位Cys中有二硫键。 综合(1)、(2)、(3)、(4)可得结果。
7、一个十肽的氨基酸分析表明其水解液中存在下列产物:
NH4+ Asp Glu Tyr Arg Met Pro Lys Ser Phe 并观察下列事实:(1)用羧肽酶A和B处理该十肽无效;(2)胰蛋白酶处理产生两个四肽和游离的Lys;(3)梭菌蛋白酶处理产生一个四肽和一个六肽;(4)溴化氢处理产生一个八肽和一个二肽,用单字母符号表示其序列为NP;(5)胰凝乳蛋白酶处理产生两个三肽和一个四肽,N-末端的胰凝乳蛋白酶水解肽段在中性pH时携带-1净电荷,在pH12时携带-3净电荷;(6)一轮Edman降解给出下面的PTH衍生物:
写出该十肽的氨基酸序列。[Ser-Glu-Tyr-Arg-Lys-Lys-Phe-Met-Asn-Pro]
解:(1)用羧肽酶A和B处理十肽无效说明该十肽C-末端残基为-Pro; (2)胰蛋白酶专一断裂Lys或Arg残基的羧基参与形成的肽键,该十肽在胰蛋白酶处理后产生了两个四肽和有利的Lys,说明十肽中含Lys-?或-Arg-?-Lys-Lys-?或-Arg-Lys-?-Lys-?Arg-Lys-?四种可能的肽段,且水解位置在4与5、5与6或4与5、8与9、9与10之间;
(3)梭菌蛋白酶专一裂解Arg残基的羧基端肽键,处理该十肽后,产生一个四肽和一个六肽,则可知该十肽第四位为-Arg-;
(4)溴化氰只断裂由Met残基的羧基参加形成的肽键,处理该十肽后产生一个八肽和一个二肽,说明该十肽第八位或第二位为-Met-;用单字母表示二肽为NP,即-Asn-Pro-,故该十肽第八位为-Met-;
(5)胰凝乳蛋白酶断裂Phe、Trp和Tyr等疏水氨基酸残基的羧基端肽键,处理该十肽后,产生两个三肽和一个四肽,说明该十肽第三位、第六位或第七位为Trp或Phe; (6)一轮Edman降解分析N-末端,根据其反应规律,可得N-末端氨基酸残疾结构式为:-NH-CH(-CH2OH)-C(=O)-,还原为-NH-CH(-CH2OH)-COOH-,可知此为Ser; 结合(1)、(2)、(3)、(4)、(5)、(6)可知该十肽的氨基酸序列为:
Ser-Glu-Tyr-Arg-Lys-Lys-Phe-Met-Asn-Pro
8、一个四肽,经胰蛋白酶水解得两个片段,一个片段在280nm附近有强的光吸收,并且Pauly反应和坂口反应(检测胍基的)呈阳性。另一片段用溴化氰处理释放出一个与茚三酮反应呈黄色的氨基酸。写出此四肽的氨基酸序列。[YRMP]
解:胰蛋白酶酶专一水解Lys和Arg残基的羧基参与形成的肽键,故该四肽中含Lys或Arg;一肽段在280nm附近有强光吸收且Pauly反应和坂口反应(检测胍基的)呈阳性,说明该肽段含Tyr和Arg;溴化氰专一断裂Met残基的羧基参加形成的肽键,又因生成了与茚三酮反应呈黄色的氨基酸,故该肽段为-Met-Pro-;所以该四肽的氨基酸组成为Tyr-Arg-Met-Pro,即YRMP。
9、蜂毒明肽(apamin)是存在蜜蜂毒液中的一个十八肽,其序列为CNCKAPETALCARRCQQH,已知蜂毒明肽形成二硫键,不与碘乙酸发生反应,(1)问此肽中存在多少个二硫键?(2)请设计确定这些(个)二硫键位置的策略。 [(1)两个;(2)二硫键的位置可能是1-3和11-15或1-11和3-15或1-15和3-11,第一种情况,用胰蛋白酶断裂将产生两个肽加Arg;第二种情况和第三种,将产生一个肽加Arg,通过二硫键部分氧化可以把后两种情况区别开来。]
10、叙述用Mernfield固相化学方法合成二肽Lys-Ala。如果你打算向Lys-Ala加入一个亮氨酸残基使成三肽,可能会掉进什么样的“陷坑”?
解:(1)用BOC保护Ala氨基端,然后将其羧基挂接在树脂上; (2)除去N端保护,将用BOC保护的Arg用缩合剂DDC与Ala相连;
(3)将把树脂悬浮在无水三氟乙酸中,通人干燥的HBr,使肽与树脂脱离,同时保护基也被切除。
若打算向Lys-Ala加入一个亮氨酸残基使成三肽,可能的坑为:Leu可能接在Arg的非α-氨基上。
第5章 蛋白质的三维结构
习题
1.(1)计算一个含有78个氨基酸的α螺旋的轴长。(2)此多肽的α螺旋完全伸展时多长?[11.7nm;28.08nm] 解:(1)考虑到α螺旋中每3.6个氨基酸残基上升0.54nm,故该α螺旋的轴长为: 78×0.54/3.6=11.7nm
(2) 考虑到完全伸展时每个氨基酸残基约占0.36nm,故此时长为: 78×0.36=28.08nm
2.某一蛋白质的多肽链除一些区段为α螺旋构想外,其他区段均为β折叠片构象。该蛋白质相对分子质量为240000,多肽链外形的长度为5.06×10-5cm。试计算:α螺旋占该多肽链的百分数。(假设β折叠构象中每氨基酸残疾的长度为0.35nm)[59%]
解:一般来讲氨基酸的平均分子量为120Da,此蛋白质的分子量为240000Da,所以氨基酸残基数为240000÷120=2000个。设有X个氨基酸残基呈α螺旋结构,则: X?0.15+(2000-X)×0.35=5.06×10-5×107=506nm
解之得X=970,α螺旋的长度为970×0.15=145.5,故α-螺旋占该蛋白质分子的百分比为: 145.5/536×100%=29%
3.虽然在真空中氢键键能约为20kj/mol,但在折叠的蛋白质中它对蛋白质的稳定焓贡献却要小得多(<5kj/mol)。试解释这种差别的原因。[在伸展的蛋白质中大多数氢键的供体和接纳体都与水形成氢键。这就是氢键能量对稳定焓贡献小的原因。]
4.多聚甘氨酸是一个简单的多肽,能形成一个具有φ=-80°ψ=+120°的螺旋,根据拉氏构象图(图5-13),描述该螺旋的(a)手性;(b)每圈的碱基数。[(a)左手;(b)3.0] 解:据P206图5-13拉氏构象图, =φ-80°ψ=+120°时可知该螺旋为左手性,每圈残基数
为3.0。
5.α螺旋的稳定性不仅取决于肽链间的氢键形成,而且还取决于肽链的氨基酸侧链的性质。试预测在室温下的溶液中下列多聚氨基酸那些种将形成α螺旋,那些种形成其他的有规则的结构,那些种不能形成有规则的结构?并说明理由。(1)多聚亮氨酸,pH=7.0;(2)多聚异亮氨酸,pH=7.0;(3)多聚精氨酸,pH=7.0;(4)多聚精氨酸,pH=13;(5)多聚谷氨酸,pH=1.5;(6)多聚苏氨酸,pH=7.0;(7)多聚脯氨酸,pH=7.0;[(1)(4)和(5)能形成α螺旋;(2)(3)和(6)不能形成有规则的结构;(7)有规则,但不是α螺旋]
6. 多聚甘氨酸的右手或左手α螺旋中哪一个比较稳定?为什么?[因为甘氨酸是在α-碳原子上呈对称的特殊氨基酸,因此可以预料多聚甘氨酸的左右手α螺旋(他们是对映体)在能量上是相当的,因而也是同等稳定的。]
7.考虑一个小的含101残基的蛋白质。该蛋白质将有200个可旋转的键。并假设对每个键φ和ψ有两个定向。问:(a)这个蛋白质可能有多种随机构象(W)?(b)根据(a)的答案计算在当使1mol该蛋白质折叠成只有一种构想的结构时构想熵的变化(ΔS折叠);(c)如果蛋白质完全折叠成由H键作为稳定焓的唯一来源的α螺旋,并且每mol H键对焓的贡献为-5kj/mol,试计算ΔH折叠;(d)根据逆的(b)和(c)的答案,计算25℃时蛋白质的ΔG折叠。该蛋白质的折叠形式在25℃时是否稳定?
[(a)W=2200=1.61×1060;(b)ΔS折叠=1.15 kj/(K?mol)(c)ΔH折叠100×(-5 kj/mol)=-500 kj/mol;注意,这里我们没有考虑在螺旋末端处某些氢键不能形成这一事实,但考虑与否差别很小。(d)ΔG折叠=-157.3 kj/mol.由于在25℃时ΔG折叠<0,因此折叠的蛋白质是稳定的。]
8.两个多肽链A和B,有着相似的三级结构。但是在正常情况下A是以单体形式存在的,而B是以四聚体(B4)形式存在的,问A和B的氨基酸组成可能有什么差别。[在亚基-亚基相互作用中疏水相互作用经常起主要作用,参与四聚体B4的亚基-亚基相互作用的表面可能比单体A的对应表面具有较多的疏水残基。]
9.下面的序列是一个球状蛋白质的一部分。利用表5-6中的数据和Chou-Faman的经验规则,预测此区域的二级结构。RRPVVLMAACLRPVVFITYGDGGTYYHWYH
[残基4-11是一个α螺旋,残基14-19和24-30是β折叠片。残基20-23很可能形成β转角]
10.从热力学考虑,完全暴露在水环境中和完全埋藏在蛋白质分子非极性内部的两种多肽片段,哪一种更容易形成α螺旋?为什么?[埋藏在蛋白质的非极性内部时更容易形成α螺旋。因为在水环境中多肽对稳定焓(ΔH折叠)的贡献要小些。]
11.一种酶相对分子质量为300000,在酸性环境中可解离成两个不同组分,其中一个组分的相对分子质量为100000,另一个为50000。大的组分占总蛋白质的三分之二,具有催化活性。用β-巯基乙醇(能还原二硫桥)处理时,大的失去催化能力,并且它的沉降速度减小,但沉降图案上只呈现一个峰(参见第7章)。关于该酶的结构作出什么结论?[此酶含4个亚基,两个无活性亚基的相对分子质量为50000,两个催化亚基的相对分子质量为100000,每个催化亚基是由两条无活性的多肽链(相对分子质量为50000)组成。彼此间由二硫键交联在一起。]
12.今有一种植物的毒素蛋白,直接用SDS凝胶电泳分析(见第7章)时,它的区带位于肌红蛋白(相对分子质量为16900)和β-乳球蛋白(相对分子质量37100)两种蛋白之间,当这个毒素蛋白用β-巯基乙醇和碘乙酸处理后,在SDS凝胶电泳中仍得到一条区带,但其位置靠近标记蛋白细胞素(相对分子质量为13370),进一步实验表明,该毒素蛋白与FDNB反应并酸水解后,释放出游离的DNP-Gly和DNP-Tyr。关于此蛋白的结构,你能做出什么结论?[该毒素蛋白由两条不同的多肽链通过链间二硫键交联而成,每条多肽链的相对分子质量各在13000左右。]
13.一种蛋白质是由相同亚基组成的四聚体。(a)对该分子说出两各种可能的对称性。稳定缔合的是哪种类型的相互作用(同种或异种)?(b)假设四聚体,如血红蛋白,是由两个相同的单位(每个单位含α和β两种链)组成的。问它的最高对称性是什么?[(a)C4和D2,C4是通过异种相互作用缔合在一起,D2是通过同种相互作用缔合在一起,(b)C2因为每个αβ二聚体是一个不对称的原聚体]
14.证明一个多阶段装配过程比一个单阶段装配过程更容易控制蛋白质的质量。考虑一个多聚体酶复合物的合成,此复合物含6个相同的二聚体,每个二聚体由一个多肽A和一个B组成,多肽A和B的长度分别为300个和700个氨基酸残基。假设从氨基酸合成多肽链,多肽链组成二聚体,再从二聚体聚集成多聚体酶,在这一建造过程中每次操作的错误频率为10-8,假设氨基酸序列没有错误的话,多肽的折叠总是正确的,并假设在每一装配阶段剔除有缺陷的亚结构效率为100%,试比较在下列情况下有缺陷复合物的频率:(1)该复合物以一条6000个氨基酸连续的多肽链一步合成,链内含有6个多肽A和6个多肽B。(2)该复合物分3个阶段形成:第一阶段,多肽A和B的合成;第二阶段,AB二聚体的形成;第三阶段,6个AB二聚体装配成复合物。
[(1)有缺陷复合物的平均频率是6000×10-8=6×10-5]
[(2)由于有缺陷的二聚体可被剔除,因此有缺陷复合物的平均率只是最后阶段的操作次数(5次操作装配6个亚基)乘以错误频率,即:5×10-8。因此它比一步合成所产生的缺陷频率约低1000倍。]
第6章 蛋白质结构与功能的关系
1.蛋白质A和B各有一个配体X的结合部位,前者的解离常数Kd为10-6mol/L,后者Kd为10-9mol/L。(a)哪个蛋白质对配体X的亲和力更高?(b)将这两个蛋白质的Kd转换为结合常数Ka。([a)蛋白质B;(b)蛋白质A的Ka=106(mol/L)-1,蛋白质B的Ka=109(mol/L)-1
2.下列变化对肌红蛋白和血红蛋白的O2亲和力有什么影响?(a)血浆的pH从7.4降到7.2;(b)肺中CO2分压从45torr(屏息)降到15torr(正常);(c)BPG水平从4.5mmol/L(海平面)增至7.5mmol(高空)。[对肌红蛋白:(a)无;(b)无;(c)无。对血红蛋白:(a)降低;(b)增加;(c)降低]
3.在37℃,pH7.4,CO2分压40 torr和BPG正常胜利水平(4.5mmol/L血)条件下,人全血的氧结合测定给出下列数据: p(O2) %饱和度(=100×Y) 10.6 10
19.5 30 27.4 50 37.5 70 50.4 85 77.3 96
92.3 98
(a) 根据这些数据,绘制氧结合曲线;估算在(1)100torr p(O2)(肺中)和(2)30 torr p(O2)(静脉血中)下血的氧百分饱和度。
(b) 肺中[100 torr p(O2)]结合的氧有百分之多少输送给组织[30 torr p(O2)]? (c)
如果在毛细血管中pH降到7.0,利用图6-17数据重新估算(b)部分。
[(a)(1)98%,(2)58%;(b)约40%;(c)约50%] 解:(a)图略,从图中克知分别为98%和58%;
(b)98%-58%=40%,故约40%;
(c)当pH降到7.0时,据图6-17可知:96%-46%=50%。
4.如果已知P50和n,可利用方程(6-15)Y/(1-Y)=[ p(O2)/ P50]n计算Y(血红蛋白氧分数饱和度)。设P50=26 torr,n=2.8,计算肺(这里p(O2)=100 torr)中的Y和毛细血管(这里p(O2)=40 torr)中的Y。在这些条件下输氧效率(Y肺-Y毛细血管=ΔY)是多少?除n=1.0外,重复上面计算。比较n=2.8和n=1.0时的ΔY值。并说出协同氧结合对血红蛋白输氧效率的影响。[n=2.8时,Y肺=0.98,Y毛细血管=0.77,所以,ΔY=0.21,n=1.0时,Y肺=0.79,Y毛细血管=0.61,所以,ΔY=0.18,两ΔY之差0.21-0.18=0.03,差值似乎不大,但在代谢活跃的组织中p(O2)<40 torr,因此潜在输氧效率不小,参见图6-15] 解:Y肺/(1-Y肺)=[100/26]2.8 Y肺=0.98 Y毛/(1-Y毛)=[40/26]2.8 Y毛=0.77 ΔY=0.98-0.77=0.21
当n=1.0时,同理,Y肺=0.79 Y毛=0.61 ΔY=0.18
5.如果不采取措施,贮存相当时间的血,2.3-BPG的含量会下降。如果这样的血用于输血可能会产生什么后果?[贮存过时的红血球经酵解途径代谢BPG。BPG浓度下降,Hb对O2的亲和力增加,致使不能给组织供氧。接受这种BPG浓度低的输血,病人可能被窒息。]
6.HbA能抑制HbS形成细长纤维和红细胞在脱氧后的镰刀状化。为什么HbA具有这一效应?[去氧HbA含有一个互补部位,因而它能加到去氧HbS纤维上。这样的纤维不能继续延长,因为末端的去氧HbA分子缺少“粘性”区。]
7.一个单克隆抗体与G-肌动蛋白结合但不与F-肌动蛋白结合,这对于抗体识别抗原表位能告诉你什么?[该表位可能是当G-肌动蛋白聚合成F-肌动蛋白时被埋藏的那部分结构。]
8.假设一个Fab-半抗原复合体的解离常数在25℃和pH7时为5×10-7mol/L。(a)结合的标准自由能(25℃和pH7时)是多少?(b)此Fab的亲和力结合常数是多少?(c)从该复合体中释放半抗原的速度常数为120S-1。结合的速度常数是多少?此说明在结合半抗原时抗体中的结构变化是大还是小?[(a)ΔG0ˊ=35.9kJ/mol;(b)Ka=2×106mol-1L;(c)结合速度常数k=2×108mol-1S-1L,此值接近于小分子与蛋白质相遇(结合)的扩散控制限制(108至109mol-1S-1L)]
解:(a)ΔG0ˊ=-RTlnKa=-8.31×298×ln2000000=-35.9kJ/mol
(b)Ka=1/Keq=1/5×10-7=2×106mol-1L
9.抗原与抗体的结合方式与血红蛋白的氧结合相似。假设抗原是一价,抗体是n价,即抗体分子有n个结合部位,且各结合部位的结合常数Ka值是相同的,则可证明当游离抗原浓度为[L]时,结合到抗体上的抗原浓度[Lp]与抗体的总浓度[Pr]之比值:N =[Lp]/[Pr]=(nKa [L])/(1+Ka [L]),N实际上表示被一个抗体分子结合的抗原分子平均数。 (a)证明上面的方程可重排为N /[L]=Kan-KaN
此方程式称Scatchard方程,方程表明,N /[L]对N作图将是一条直线。
(b)根据Scatchard方程,利用下列数据作图求出抗体-抗原反应的n和Ka值。 [L] mol/LN 1.43×10-5 2.57×10-5 6.00×10-5 1.68×10-4
0.5
0.77 1.20 1.68
3.70×10-4 1.85
[(a)第一个方程两边各乘(1+Ka [L]),然后两边各除以[L],并重排第2个方程;(b)根据第二方程, N /[L]对N作图的斜率是-Ka,N /[L]=0时的截距给出n。利用数据作图得Ka =2.2×10-4 mol/L,n=2.1。因为结合部位数目只可能是整数,所以n=2]
10.一个典型的松弛肌节中细丝长约2μm,粗丝长约为1.5μm。 (a) 估算在松弛和收缩时粗丝和细丝的重叠情况。
(b) 一次循环中肌球蛋白沿细丝滑行“一步”移动约7.5nm,问一次收缩中每个肌动蛋白纤维需要进行多少个步? [(a)约0.75nm,(b)约67步] 解:(a)根据P281图6-35A所示, 当松弛时重叠总长度为:(1+1)-(3-1.5)=0.5μm 0.5/2=0.25μm 当收缩时重叠总长度为:(1+1)-(2-1.5)=1.5μm 1.5/2=0.75μm (b)(3-2)÷2×103÷7.5≈67步
第7章 蛋白质的分离、纯化和表征
1.测得一种血红素蛋白质含0.426%铁,计算最低相对分子质量。一种纯酶按重量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少?[13110;15870] 解:(1)蛋白质Mr=55.8÷0.426%=13100
(2)亮氨酸和异亮氨酸的分子质量都是131Da,根据两种氨基酸的含量来看,异亮氨酸:亮氨酸=2.48%:1.65%=3:2,所以在此蛋白质中的亮氨酸至少有两个,异亮氨酸至少有三个,那么:蛋白质Mr =2×(131-18)/1.65%=13697Da
2.超速离心机的转速为58000r/min时,(1)计算角速度ω,以rad/s表示;(2)计算距旋转中心6.2cm处的离心加速度a;(3)此离心加速度相当于重力加速度“g”的多少倍? [(1)ω=6070.7rad/s (2)a=2.284×108cm/s2;(3)a=233061g] 解:(1)ω=58000×2π/60=6070.7rad/s
(2)a=(6070.7)2×6.2=2.284×108cm/s2 (3)2.285×106/9.8=233061
3.一种蛋白质的偏微比容为0.707cm2/g,当温度校正为20℃,溶剂校正为水时扩散系数(D20.W)为13.1×10-7cm2/s.沉降系数(S20.W)为2.05S。20℃时水的密度为0.998g/ cm3,根据斯维德贝格公式计算该蛋白质的相对分子质量。[13000]
解:Mr=(RTS)/[D(1-υρ)]=8.314×(273+20)×2.05/[13.1×10-7(1-0.707×0.998)]=13000
4.一个层析柱中固定相体积(Vs)为流动相体积(Vm)的1/5。假设某化合物的分配系数,(a)Kd=1;(b)Kd=50。计算该化合物的有效分配系数(Keff),也称容量因子(capacity)。[(a)Keff=0.2;(b)Keff=10]
5.指出从分子排阻层析柱上洗脱下列蛋白质时的顺序。分离蛋白质的范围是5000到400000;肌红蛋白、过氧化氢酶、细胞色素C、肌球蛋白、胰凝乳蛋白酶原和血清清蛋白(它们的Mr见表7-4)。[肌球蛋白、过氧化氢酶、血清清蛋白、胰凝乳蛋白酶原、肌红蛋白、细胞色素C]
6.由第5题所述的,从分子排阻层析柱上洗脱细胞色素C、β-乳球蛋白、未知蛋白和血清红蛋白时,其洗脱体积分别为118、58、37和24ml,问未知蛋白的Mr是多少?假定所有蛋白质都是球形的,并且都处于柱的分级分离范围。[52000]
7.在下面指出的pH下,下述蛋白质在电场中相哪个方向移动,即向正极、负极还是不动?(根据表7-2的数据判断。)(1)血清蛋白,pH5.0;(2)β-乳球蛋白,pH5.0和7.0;(3)胰凝乳蛋白酶原,pH5.0、9.1和11。[(1)正极;(2)负极、正极;(3)负极、不动、正极] 解:(1)卵清蛋白pI=4.6,pH=5.0>4.6 带负电,向正极移动; (2)β-乳球蛋白pI=5.2,pH=5.0<5.2 带正电,向负极移动; pH=7.0>5.2 带负电,向正极移动; (3)胰凝乳蛋白酶原pI=9.1,pH=5.0<9.1 带正电,向负极移动; pH=9.1=pI 净电荷为零,不移动; pH=11>9.1 带负电,向正极移动;
8.(1)当Ala、Ser、Phe、Leu、Arg、Asp和His的混合物在pH3.9进行纸电泳时,哪些氨基酸移向正极?哪些氨基酸移向负极?(2)纸电泳时,带有相同电荷的氨基酸常有少许分开,例如Gly可与Leu分开,试说明为什么?(3)设Ala、Val、Glu、Lys和Thr的混合物pH为6.0,试指出纸电泳后氨基酸的分离情况。
PI值:Ala:6.02 Ser:5.68 Phe:5.48 Leu:5.98 Arg:10.76 Asp:2.97 His:7.59 [(1)Ala、Ser、Phe和Leu以及Arg和His向负极,Asp移向正极;(2)电泳时,具有相同电荷的较大分子比较小分子移动得慢,因为电荷/质量之比较小,因而引起每单位质量迁移的驱动力也较小。(3)Glu移向正极,Lys移向负极,Val、Ala和Thr则留在原点。]
9.凝胶过滤层析和凝胶电泳中的分子筛效应有什么不同?为什么?
答:凝胶过滤层析中每一个凝胶珠相当于一个分子筛,故小分子所经过的路径长,落在大分子后面;而凝胶电泳中整块胶板相当于一个分子筛,故大分子受到的阻力大而迁移慢,落在小分子后面。
10.配制一系列牛血清清蛋白(BSA)稀释液,每一种溶液取0.1ml进行Bradford法测定。
对适当的空白测定595nm波长处的光吸收(A595)。结果如下表所示: BSA浓度(mg?L-1) A595 1.5 1.4 1.0 0.97 0.8 0.79 0.6 0.59 0.4 0.37
0.2 0.17
BSA浓度对A595作图得标准曲线。E.coli的蛋白质提取液样品(0.1ml)测得的A595为0.84。根据标准曲线算出E.coli提取液中的蛋白质浓度。[0.85mg/ml]
解:标准曲线略。由标准曲线可知,当A595为0.84时,BSA浓度为0.85mg/ml。
第8章 酶通论
1.酶作为生物催化剂有哪些特点?
答:酶是细胞所产生的,受多种因素调节控制的具有催化能力的生物催化剂,与一般非生物催化剂相比较有以下几个特点:1、酶易失活;2、具有很高的催化效率;3、具有高度专一性;4、酶活性受到调节和控制。
2.何谓酶的专一性?酶的专一性有哪些?如何解释酶作用的专一性?研究酶的专一性有何意义?
答:酶的专一性是指酶对催化的反应和反映物有严格的选择性。酶的专一性分为两种类型:1、结构专一性,包括绝对专一性、相对专一性(族专一性或基团专一性、键专一性);2、立体异构专一性,包括旋光异构专一性、几何异构专一性。
通过对酶结构与功能的研究,确信酶与底物作用的专一性是由于酶与底物分子的结构互补,诱导契合,通过分子的相互识别而产生的。
对酶的专一性研究具有重要的生物学意义。它有利于阐明生物体内有序的代谢过程,酶的作用机制等。
3.酶的活性受那些因素调节,试说明之。 答:酶的调节和控制有多种方式,主要有: (1) (2)
调节酶的浓度:主要有2种方式:诱导或抑制酶的合成;调节酶的降解; 通过激素调节酶活性、激素通过与细胞膜或细胞内受体相结合而引起一系列生物学
效应,以此来调节酶活性;
(3) 反馈抑制调节酶活性:许多小分子物质的合成是由一连串的反应组成的,催化此物质合成的第一步的酶,往往被他们终端产物抑制; (4) 抑制剂和激活剂对酶活性的调节:酶受大分子抑制剂或小分子物质抑制,从而影响酶活性; (5) 性。
其他调节方式:通过别构酶、酶原的激活、酶的可逆共价修饰和同工酶来调节酶活
4.辅基和辅酶有何不同?在酶催化反应种起什么作用?
答:辅酶通常指与脱辅酶结合比较松弛的小分子有机物质。通过透析方法可以除去,如辅酶Ⅰ和辅酶Ⅱ等。辅基是以共价键和脱辅酶结合,不能通过透析除去,需要经过一定的化学处理才能与蛋白分开,如细胞色素氧化酶中的铁卟啉,丙酮氧化酶中的黄素腺嘌呤二核苷酸
(FAD)都属于辅基。它们的区别只在于它们与脱辅酶结合的牢固程度不同。辅酶、辅基在酶催化反应中通常是起着电子、原子或某些化学基团的传递作用。
5.酶分哪几大类?举例说明酶的国际系统命名法及酶的编号。
答:国际酶学委员会根据酶所催化反应的类型,把酶分为6大类:即氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类和连接酶类。分别利用1、2、3、4、5、6来表示。例如:1.1.3表示氧化还原酶,作用于CHOH基团,受体是分子氧。根据底物中别所用的基团或键的特点将每一大类分为若干亚类,每一个亚类又按顺序变成1、2、3??等数字;每一个亚基可再分亚亚类,仍用1、2、3??编号,每一个酶的分类编号由4个数字组成,数字间由由“?”隔开。第一个数字指明该酶属于哪一个大类;第二个数字指明酶属于哪一个亚类;第三个数字指出该酶属于一个亚亚类;第四个数字则表明该酶在亚亚类中的排号。编号之间冠以EC(Enzyme Commision)。
6.什么叫酶的活力和比活力?测定酶活力应注意什么?为什么测定酶活力时以测定初速率为宜,并且底物浓度远远大于酶浓度? 答:酶活力指酶催化某一化学反应的能力,其大小可用在一定条件下所催化的某一化学反应的反应速率来表示;酶的比活力代表酶的纯度,根据国际酶学委员会的规定比活力用每mg蛋白质所含的酶活力单位数表示。
酶的催化作用受测定环境的影响,因此测定酶活力要在最适条件下进行,即最适温度、最适pH、最适底物浓度和最适缓冲离子强度等。只有在最适条件下测定才能真实反映酶活力的大小。
随时间的延长,酶促反应中底物浓度降低,产物浓度增加,加速逆反应的进行,产物对酶抑制或激活作用以及随时间的延长引起酶本身部分分子失活等,酶促反应速率降低,因此测定活力,应测定酶促反应的初速率,从而避免上述种种复杂因素对反应速率的影响。
底物浓度太低时,5%以下的底物浓度变化实验上不易测准,所以在测定酶的活力时,往往使底物浓度足够大,这样整个酶反应对底物来说是零级反应,而对酶来说却是一级反应,这样测得的速率就比较可靠地反映酶的含量。
7.什么叫核酶和抗体酶?它们的发现有什么重要意义?
答:具有催化功能的RNA叫核酶。它的发现,表明RNA是一种既能携带遗传信息又有生物催化功能的生物分子。因此很可能RNA早于蛋白质和DNA,是生命起源中首先出现的生物大分子,而一些有酶活性的内含子可能是生物进化过程中残存的分子“化石”。酶RNA的发现,提出了生物大分子和生命起源的新概念,无疑促进对生物进化和生命起源的研究。 抗体酶是20实际80年代后期才出现的一种具有催化能力的蛋白质,其本质上是免疫球蛋白,但是在易变区被赋予了酶的属性,所以又称“催化性抗体”,抗体酶的发现,不仅为酶的过渡态理论提供了有力的实验证据,而且抗体酶将会得到广泛的应用。
8.解释下列名词:
(1) 生物酶工程:酶学和以DNA重组技术为主的现代分子生物学技术相结合的产物。 (2) 固定化酶:将水溶性酶用物理或化学方法处理,使之成为不溶于水的、但仍具有酶活性的状态。 (3) (4) (5)
活化能:在一定温度下1mol底物全部进入活化状态所需要的自由能(kJ/mol) 酶的转化数:在一定条件下每秒钟每个酶分子转换底物的分子数。 寡聚酶:由两个以上亚基组成的酶。
(6) Kat单位:在最适条件下,每秒钟催化1mol底物转化为产物所需的酶量,为Kat
单位。
(7) 酶偶联分析法:由于分光光度法有其独特的优点,因此把一些原来没有光吸收变化的酶反应,可以通过与一些能引起光吸收变化的酶反映偶联使第一个酶反应的产物转变成第二个酶的具有光吸收变化的产物来进行测量。
(8) 诱导契合说:1958年Koshland提出,当酶分子与底物分子接近时,酶蛋白受底物分子诱导,其构象发生有利于底物结合的变化,酶与底物在此基础上互补契合进行反应。 (9) 反馈抑制:许多小分子物质的合成是由一联串的反应组成的,催化此物质生成的第一步的酶,往往被它们终端产物抑制。这种抑制叫反馈抑制。 (10) 多酶复合体:由几种酶靠非共价键彼此嵌合而成。
9.用AgNO3对在10ml含有1.0mg/ml蛋白质的纯酶溶液进行全抑制,需用0.342μmol AgNO3,求该酶的最低相对分子质量。 解:Mr=10×10-3/0.342×10-6=29240Da
10.1μg纯酶(Mr:92×103)在最适条件下,催化反应速率为0.5μmol/min,试计算:(1)酶的比活力。[500U/mg](2)转换数。[766.7s-1] 解:(1)比活力=0.5μmol/min/1μg=500U/mg
(2)转换数=0.5/60÷[1/(92×103)]=766.7s-1
11.1g鲜重的肌肉含有40单位的某种酶,其转换数为6×104min-1,试计算该酶在细胞内浓度(假设新鲜组织含水80%,并且全部在细胞内)。[8.33×10-7 mol/L] 解:[10-6/(6×104)]×40÷[(1×80%)/103]=8.33×10-7 mol/L
12.焦磷酸酶可以催化焦磷酸水解或磷酸,其相对分子质量为120×103,由6个相同亚基组成。纯酶的Vmax为2800U/mg酶。它的一个活力单位规定为:在标准测定条件下,37℃、15min内水解10μmol焦磷酸所需要的酶量。问:(1)每mg酶在每秒钟内水解多少mol 底物?[3.11×10-5mol]。(2)每mg酶中有多少mol的活性部位(假设每个亚基上有一个活性部位)?[5×10-8mol活性中心]。(3)酶的转换数是多少?[622s-1或622mol焦磷酸(/s?mol)酶活性中心]
解:(1)2800×[(10×10-6)/(15×60)]=3.11×10-5 mol (2)(1×10-3)/(120×103)×6=5×10-8 mol
(3){(3.11×10-5)/[(1×10-3)/(120×103)]}/6=622
13.称取25mg蛋白酶粉配制成25ml酶溶液,从中取出0.1ml酶液,以酪蛋白为底物,用Folin-酚比色法测定酶活力,得知每小时产生1500μg酪氨酸。另取2ml酶液,用凯氏定氮法测得蛋白氮为0.2mg,若以每分钟产生1μg 酪氨酸的酶量为1个活力单位计算,根据以上数据,求出:(1)1ml酶液中所含蛋白质量及活力单位。[0.625mg蛋白质,250U](2)比活力。[400U/mg蛋白质](3)1g酶制剂的总蛋白含量及总活力。[0.625g,2.5×105U] 解:(1)(0.2×6.25)/(2×25/25)=0.625mg (1500/60)/(0.1×25/25)=250U
(2)250/0.625=400U/mg
(3)[0.625/(1×25/25)]×103= 0.625×103mg=0.625g [(1500/60)/(0.1×25/25)]×103=2.5×105U
14.有1g淀粉酶酶制剂,用水溶解成1000ml,从中取出1ml测定淀粉酶活力,测知每5min分解0.25g淀粉。计算每g酶制剂所含淀粉酶活力单位数?[3000U](淀粉酶活力单位定义:在最适条件下每小时分解1g淀粉的酶量称为1个活力单位) 解:(0.25×60/5)/(1/1000)=3000U
15.某酶的初提取液经过一次纯化后,经测定得到下列数据:试计算比活力、百分产量及纯化倍数。[比活力:180U/mg蛋白质,百分产量:17%,纯化倍数:9倍] 体积/ml 活力单位/(U/ml) 蛋白质/(mg/ml) 初提取液
(NH4)2SO4盐析
120
5 200 810 10 4.5 解:(1)810/4.5=180U/mg
(2)810×5÷(200×120)×100%=17% (3)180÷(200/10)=9
第9章 酶促反应动力学
1.当一酶促反应进行的速率为Vmax的80%时,在Km和[S]之间有何关系?[Km=0.25[S]] 解:根据米氏方程:V=Vmax[S]/(Km+[S])得: 0.8Vmax=Vmax[S]/(Km+[S]) Km=0.25[S]
2.过氧化氢酶的Km值为2.5×10-2 mol/L,当底物过氧化氢浓度为100mmol/L时,求在此浓度下,过氧化氢酶被底物所饱和的百分数。[80%]
解:fES=[S]/(Km+[S])=100×10-3/(2.5×10-2+100×10-3)=80%
3.由酶反应S→P测得如下数据: [S]/molL-1 6.25×10-6 7.50×10-5 1.00×10-4 1.00×10-3
V/nmolL-1min-1 15.0
56.25 60.0 74.9
1.00×10-2 75.0
(1) 计算Km及Vmax。[Km:2.5×10-5,Vmax:75 nmolL-1min-1]
(2) 当[S]= 5×10-5 mol/L时,酶催化反应的速率是多少?[50.0 nmolL-1min-1] (3) (4)
若[S]= 5×10-5 mol/L时,酶的浓度增加一倍,此时V是多少?[100 nmolL-1min-1] 表中的V是根据保温10min产物生成量计算出来的,证明V是真正的初速率。
解:(1)Lineweaver-Burk双倒数作图法,或由米氏方程得:
15=Vmax?6.25×10-6/ (Km+6.25×10-6)??① 60=Vmax?10-4/(Km+10-4)??② 由①、②得:Km=2.5×10-5,Vmax=75 nmolL-1min-1
(2)V=75×5×10-5/(2.5×10-5+5×10-5)=50.0 nmolL-1min-1
(3)50×2=100 nmolL-1min-1 (4)底物转化量:(15.0×10-9×10)/(6.26×10-6)=0.024=2.4% < 5% ,故可证明。
5.某酶的Km为4.7×10-5 molL-1,Vmax为22μmolL-1 min-1,底物浓度为2×10-4 molL-1。试计算:(1)竞争性抑制剂,(2)非竞争性抑制剂,(3)反竞争性抑制剂的浓度均为5×10-4 molL-1时的酶催化反映速率?这3中情况的Ki值都是3×10-4 molL-1,(4)上述3种情况下,抑制百分数是多少?[(1)13.54μmolL-1 min-1,24%;(2)6.68μmolL-1 min-1,62.5%;(3)7.57μmolL-1 min-1,57.5%]
解:(1)竞争性抑制剂的米氏方程为:V=Vmax[S]/(Km(1+[I]/Ki)+[S]) 代入数据得:V=13.54μmolL-1 min-1 i%=(1-a)×100%=(1-Vi/Vo)×100%=24%
(2)非竞争性抑制剂的米氏方程为:V=Vmax[S]/((Km+[S])(1+[I]/Ki)) 代入数据得:V=6.68μmolL-1 min-1
i%=(1-a)×100%=(1-Vi/Vo)×100%=62.5%
(3)反竞争性抑制剂的米氏方程:V=Vmax[S]/(Km+[S](1+[I]/Ki)) 代入数据得:V=7.57μmolL-1 min-1 i%=(1-a)×100%=(1-Vi/Vo)×100%=57.5%
6.今制得酶浓度相同、底物浓度不同的几个反应混合液,并测得反应初速率,数据见下表。请利用“Eadie-Hofstee”方程式,用图解法求出Km值及Vmax值。这种作图法与Lineweaver-Burk作图法比较有何优点?[Vmax=160μmolL-1 min-1,Km=8.0×10-5 molL-1] [S]/molL-1 V/μmolL-1min-1 4.0×10-4 130 2.0×10-4 110 1.0×10-4 89 5.0×10-5 62
4.0×10-5 53 2.5×10-5 38 2.0×10-5 32
解:将米氏方程改写成:V=Vmax-Km?V/[S],以V-V/[S]作图,得一直线,其纵截距为Vmax,斜率为-Km,由图得Vmax=160μmolL-1min-1,Km=8.0×10-5 molL-1
优点:实验点相对集中于直线上,Km和Vmax测定值较准确。
7.对一个遵从米氏方程的酶来说,当底物浓度[S]=Km,竞争抑制剂浓度[I]=Ki时,反应的初速率是多少?[V=1/3Vmax]
解:根据米氏方程可得:V=Vmax[S]/ (Km(1+[I]/Ki)+[S]),其中[S]=Km,[I]=Ki
V= VmaxKm/ (Km(1+Ki/Ki)+Km)=1/3 Vmax
8.用下列表中数据确定此酶促反应:(1)无抑制剂和有抑制剂的Vmax和Km值。[无抑制剂时Km=1.1×10-5 molL-1,Vmax=50μmolL-1min-1,有抑制剂时:Km=3.1×10-5 molL-1,Vmax=50μmolL-1min-1](2)EI复合物的解理常数Ki。[Ki= 1.10×10-3molL-1] [S]/molL-1 V/μmolL-1min-1 无抑制剂 有抑制剂(2.0×10-3 molL-1)
0.3×10-5 10.4 14.5 22.5 33.8 40.5 4.1 6.4 11.5 22.6 33.8 0.5×10-5 1.0×10-5 3.0×10-5
9.0×10-5 解:(1)无抑制剂时:V=Vmax[S]/(Km+[S]),将表中数据代入此式可得Km=1.1×10-5 molL-1,Vmax=45.1μmolL-1min-1
对表中数据用V对[S]作图,求Km值,可判断有抑制剂时,Km值明显增大,故该抑制剂应为竞争性抑制剂。据V=Vmax[S]/(Km(1+[I]/Ki)+[S])以及Vmax不变的性质可得,此时Vmax=45.1μmolL-1min-1,Km=3.1×10-5 molL-1,Ki= 1.10×10-3molL-1
9.同上。
10.从速率对底物浓度作图9-31中,求出下列参数(反应混合物中酶量为10-3μmol)。(1)Km;(2)Vmax;(3)kcat/Km;(4)转换数。[Km:5×10-4molL-1;Vmax:6μmolL-1min-1;kcat/Km: 2×105 mol-1Ls-1;转换数:100s-1] 解:Vmax=kcat?[Et]=k3?[E]=k3?[ES]
11.下面的叙述哪一个是正确的?胰凝乳蛋白酶的转换数100s-1,DNA聚合酶是15s-1。 (1) (2) (3)
胰凝乳蛋白酶结合底物比DNA聚合酶有更高的亲和性。 胰凝乳蛋白酶反映速率比DNA聚合酶反映速率更大。
在特别的酶浓度和饱和底物水平下胰凝乳蛋白酶反应速率比DNA聚合酶在相同条
件下更低。
(4) 在饱和底物水平下,两种酶的反应速率,假若DNA聚合酶反应速率的6.7倍则与胰凝乳蛋白酶相等。 答:(4)正确。原因:Ks=K-1/K1 为酶与底物亲和性的度量;只有在饱和底物水平下,才有Kcat=Vmax/[E]。
12.今有一酶反应,它符合Michaelis-Menten动力学,其Km为1×10-6molL-1。底物浓度为0.1 molL-1时,反应初速度为0.1μmolL-1min-1。试问:底物浓度分别为10-2molL-1、10-3molL-1和10-6molL-1时的反应初速率是多少?[1×10-7 molL-1min-1,5×10-8 molL-1min-1]
解:∵Km=1×10-6molL-1,[S]=0.1molL-1 ,∴V=Vmax=0.1μmolL-1min-1 将题中数据代入米氏方程:V=Vmax[S]/(Km+[S])得:设[S]=xKm V=Vmax?xKm/((x+1)Km)=x/(x+1)?Vmax=1/(1+1/x)?Vmax V1=0.1 V2=0.09998 V3=1/2?Vmax=0.05
13.假设2×10-4 molL-1的[I]抑制了一个酶催化反应的75%,计算这个非竞争性抑制剂的Ki?[6.66×10-5 molL-1]
解:i%=(1-a)×100%=(1-Vi/Vo)×100%=75% Vi/Vo=1/4 → Vo=4Vi??① 再根据无抑制剂时的米氏方程:Vo=Vmax[S]/(Km+[S])??② 加入非竞争性抑制剂后:V=Vˊmax[S]/((Km+[S])(1+[I]/Ki))??③,此时Vmax变小,Km不变。
由①②③得:Ki=2×10-4/(4?Vˊmax/ Vmax-1) 加入抵制剂时,Vˊmax = Vmax,∴Ki=6.66×10-5 molL-1
14.如果Km为2.9×10-4 molL-1 。Ki为2×10-5mol/L。在底物浓度为1.5×10-3mol/L时,要得到75%的抑制,需竞争性抑制剂的浓度是多少?[3.7×10-4mol/L]
解:i%=(1-a)×100%=(1-Vi/Vo)×100%=75% Vi/Vo=1/4 → Vo=4Vi??① 再根据无抑制剂时的米氏方程:Vo=Vmax[S]/(Km+[S])??② 加入竞争性抑制剂后:V=Vˊmax[S]/(Kˊm(1+[I]/Ki) +[S])??③,此时Vmax不变,Km变大。
由①②③得:[I]=4KmKi/Kˊm-Ki+3[S][Ki]/Kˊm 加入抑制剂时,Km=Kˊm ∴[I]= 3.7×10-4mol/L
15.举例说明什么是Ks型和kcat型不可逆抑制剂。什么是过度态底物类似物?它属于何种类型抑制剂?
答:Ks型抑制剂根据底物的化学结构设计,具有底物类似的结构,可以和相应的酶结合,同时还代有一个活泼的化学基团,能与酶分子中的必需基团反应进行化学修饰,从而抑制酶。因其专一性取决于抑制剂与活性部位必需基团在反应前形成非共价络合物的解离常数以及非活性部位同类基团形成非共价络合物的解离常数之比,即Ks比值,故这类抑制剂称不可逆Ks抑制剂。例如:胰蛋白酶要求催化的底物具有一个带正电荷的侧链,如Lys、Arg侧链。对甲苯磺酰-L-赖氨酰氯甲酮(TLCK)和胰蛋白酶活性部位必需集团His57共价结合,引起不可逆失活。
Kcat型不可逆抑制剂具有天然底物的类似结构,其本身也是酶的底物,能与酶结合发生类似于底物的变化。但抑制剂还有一个潜伏的反应基团,当酶对它进行催化反应时,这个潜伏反映基团被暴露或活化,并作用于酶活性部位的必需基团或酶的辅基,使酶不可逆失活,其专一性极高。例如β-卤代-D-Ala是细菌中丙氨酸消旋酶(AR)的不可逆抑制剂,属于磷酸吡哆醛类的自杀性底物。
过渡态底物类似物是化学结构类似过渡态底物(底物和酶结合成中间复合物后被活化的过渡形式)的抑制剂,属于竞争性抑制剂,如嘌呤腺苷水合形成是小牛脱氨酶反应过渡类似物。
第10章 酶的作用机制和酶的调节
1.阐明酶活性部位的概念。可使用那些主要方法研究酶的活性部位?
答:酶的活性部位对于不需要辅酶的酶来说,就是指酶分子在三维结构上比较靠近的几个氨基酸残基负责与底物的结合与催化作用的部分;对于需要辅酶的灭来说,辅酶分子或辅酶分子上的某一部分结构,往往也是酶活性部位的组成部分。
研究酶活性部位的方法有:酶分子侧链基团的化学修饰法、动力学参数测定法、X射线晶体结构分析法和定点诱变法。
2.简要阐明胰Rnase A的活性部位如何确定?
答:用化学修饰法研究Rnase A活性的必须氨基酸残基。在pH5.5下,用等摩尔碘乙酸处理Rnase A,羧甲基化的His119是主要产物,而羧甲基化的His12产物较少。Rnase A中其他组氨酸对这个试剂的反应弱得多。所得Rnase A的两个羧甲基化的衍生物均无活性,因此可推测His119和His12为酶活性的必需基团。2,4二硝基氟苯可选择地同酶Lysε-NH2反应,酶引起失活。该结果表明Lys41也是酶活性部位的必需氨基酸。以上研究结果可认为His119、His12、Lys41构成了Rnase A的活性部位。
3.与酶催化效应有关的因素有哪些?它们是怎样提高反应速率的?
答:与酶催化速率有关的因素有7个:
1. 底物和酶的邻近效应与定向效应:酶和底物复合物的形成过程既是专一性的识别过程,更重要的是分子间反应变成分子内反应的过程。在这一过程中包括两种效应、邻近效应和定向效应。邻近效应是指酶与底物结合形成中间复合物以后,使底物和底物(如双分子反应)之间,酶的催化基团与底物之间结合于同一分子而使有效浓度得以极大的升高,从而使反应速率大大增加的一种效应。定向效应是指反应物的反应基团之间和酶的催化基团与底物的反应基团之间的正确取位产生的效应。
2. 底物的形变和诱导契合:当酶遇到其专一性底物时,酶中某些基团或离子可以使底物分子内敏感键中的某些基团的电子云密度增高或降低,产生“电子张力”,使敏感键的一端更加敏感,底物分子发生形变,底物比较接近它的过渡态,降低了反应活化能,使反应易于发生。
3. 酸碱催化:通过瞬时的向反应物提供质子或从反应物接受质子以稳定过渡态,加速反应的一类催化机制。
4. 共价催化(亲核催化或亲电子催化):在催化时,亲核催化剂或亲电子催化剂能分别放出电子或吸取电子并作用于底物的缺电子中心或负电中心,迅速形成不稳定的共价中间复合物,降低反应活化能,使反应加速。
5. 金属离子催化: 金属离子以3种主要途径参加催化过程:(1)通过结合底物为反应定向;(2)通过可逆地改变金属离子的氧化态调节氧化还原反应;(3)通过静电稳定或屏蔽负电荷,作用比质子强,不少金属离子有络合作用,并且在中性pH溶液中,H+浓度很低,但金属离子却容易维持一定浓度。金属离子通过电荷的屏蔽促进反应。金属离子通过水的离子化促进亲核催化。
6. 多元催化和协同效应:酶催化反应中常常几个基元催化反应配合在一起共同起作用,加速酶反应。
7. 活性部位微环境的影响:在酶分子的表面有一个裂缝,而活性部位就位于疏水环境的裂缝中,大大有利于酶的催化作用。
4.推测下列寡聚糖被溶菌酶水解的相对速率:(G:N-乙酰氨基葡糖;M:N-乙酰氨基葡糖乳酸)
(1)M-M-M-M-M-M;(2)G-M-G-M-G-M;(3)M-G-M-G-M-G
5.假设在合成(NAG)时D和E糖残基之间的糖苷氧已为18O所标记,当溶菌酶水解时,18O将出现在哪个产物中?
答:溶菌酶催化C1-O键断裂,故18O将出现在由A、B、C、D残基组成的四聚体中。
6.请比较溶菌酶、羧肽酶A、胃蛋白酶和胰凝乳蛋白酶:(1)哪一种酶的催化活性需要金属离子?(2)哪种酶只含一条多肽链?(3)哪种酶被DFP迅速地失活?(4)哪种酶是由酶原激活成的?
答:(1)羧肽酶A;(2)溶菌酶;(3)胰凝乳蛋白酶;(4)羧肽酶A、胃蛋白酶、胰凝乳蛋白酶。
7.上题4种酶的催化机制中是否有从酶到底物的质子转移过程?若有请指出它们的质子供体是什么?
答:溶菌酶中的Glu35的-COOH提供一个H+;羧肽酶A中的Glu270的-COOH提供一个H+;胃蛋白酶中的Asp32的-COOH提供一个H+;胰凝乳蛋白酶中Ser195提供一个H+。
8.TPCK是胰凝乳蛋白酶的亲和标记试剂,它对His57烷基化后使胰凝乳蛋白酶失活。(1)为胰蛋白酶设计一个像TPCK那样的亲和标记试剂。(2)你认为怎样可以检验它的专一性?(3)能被胰蛋白酶的这个亲和标记试剂失去活性的还有哪个丝氨酸蛋白酶?
9.胰凝乳蛋白酶、胰蛋白酶和弹性蛋白酶作为催化剂有哪些相似之处?有哪些不同之处?在酶的分子结构上是哪些因素引起这些差异?
答:相似之处:①执行相同的反应——裂解肽键;②其结构和作用机制很相似;③相对分子质量范围在2.5×103,并且具有相似的顺序和三级结构;④3个极性残基——His57、Asp102和Ser195在活性部位形成催化三联体。
不同之处:①专一性不同:胰蛋白酶裂解碱性氨基酸Arg和Lys羧基侧链肽;胰凝乳蛋白酶选择裂解芳香氨基酸如Phe和Tyr羰基侧链;弹性蛋白主要裂解小的中性氨基酸残基羰基侧链肽;②酶活性部位不同:胰蛋白酶口袋中,有一个负电荷Asp189在底部,有利于结合正电荷Arg和Lys残基;胰凝乳蛋白酶口袋被疏水氨基酸环绕,大的足以容纳一个芳香残基;弹性蛋白口袋浅,开口处具有大的Thr和Val残基,仅小的,部大的残基能够容纳在它的口袋中。
10.ATCase是一种别构酶,其活性部位与别构效应物结合部位分别处于不同亚基之上,有可能设想别构酶上这两种部位存在于同一亚基上吗?为什么?
11.对于ATCase来说,琥珀酸起着Asp(两个底物中的一个)的竞争抑制作用。υ对[Asp]的依赖关系见图10-71A(假设这些实验中第二种底物是过量的并可忽略)。在图10-71B种[Asp]维持在低水平(图10-71A种箭头所指处)不变,并加入一系列含量递增的琥珀酸。琥珀酸不能作为底物参与反应。请解释这些结果。
答:琥珀酸的结合导致协同由T型向R型转变。
12.试解释为什么胰凝乳蛋白不能像胰蛋白酶那样自我激活?
答:胰凝乳蛋白酶无法断裂Arg15羧基端肽键,故无法自我激活;而胰蛋白酶专一断裂碱性氨基酸羧基端肽键,故可断裂Lys6羧基端肽而自我激活。
13.羧肽酶A促使底物的水解,下面哪个是其重要的机制:(1)结构重排将必需氨基酸残基
靠近敏感键。(2)形成一个C端环肽的共价中间物。(3)活性部位Try残基脱质子形成亲核作用。(4)通过结合Zn2+的活化水。 答:(4)正确。
14.左边列出的每一种酶,按照提出的催化机制,从右边选择出它们适当的过渡态或化学本质。
(1)溶菌酶——(4) (2)RNA酶——(3) (3)羧肽酶A——(1) (4)胰凝乳蛋白酶(2)(5) (5)胃蛋白酶——(6) (1)Zn2+的活化水 (2)氧阴离子 (3)五价磷 (4)碳正离子 (5)四面体肽键
(6)天冬氨酸——活化水
5.对蛋白酶激A的叙述中哪一个是正确的? (1) (2)
通过ATP活化。
在没有激活剂时有2个催化亚基(C)和两个调节亚基(R)组成。
(3) 激活剂结合后解离成一个C2和2个R亚基。 (4) 在C亚基中含有一个假底物顺序。 答:(2)正确。原因:(1)通过cAMP激活;(3)激活剂结合后解离成一个R2和2个C亚基;(4)在R亚基中含有一个假底物顺序,占据了C的催化部位。
16.苯甲脒(Ki=1.8×10-5mol/L)和亮抑蛋白酶肽(Leupeptin Ki=3.8×10-7mol/L)是胰蛋白酶的两种特异竞争性抑制剂,试解释它们的抑制机制。设计亮抑蛋白酶肽的类似物抑制胰凝乳蛋白酶和弹性蛋白酶。
第11章 维生素与辅酶
1.例举水溶性维生素与辅酶的关系及其主要生物学功能。
答:水溶性维生素包括维生素B族、硫辛酸和维生素C。维生素B族的主要维生素有维生素B1、B2、PP、B6、泛酸、生物素、叶酸及B12等。
维生素B族在生物体内通过构成辅酶而发挥对物质代谢的影响。这类辅酶在肝脏内含量最丰富,体内不能多储存,多余的自尿中排出。
维生素B1在生物体内常以硫胺素焦磷酸(TPP)的辅酶形式存在,与糖代谢密切,可抑制胆碱脂酶活性。
维生素PP包括烟酸和烟酰胺,在体内烟酰胺与核糖、磷酸、腺嘌呤组成脱氢酶的辅酶,烟酰胺的辅酶是电子载体,在各种酶促氧化-还原过程中起着重要作用。
维生素B2有氧化型和还原型两种形式,在生物体内氧化还原过程中起传递氢的作用,以黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)形式存在,是生物体内一些氧化还原酶(黄素蛋白)的辅基。
泛酸是辅酶A和磷酸泛酰巯基乙胺的组成成分,辅酶A主要起传递酰基的作用。 维生素B6包括3中物质:吡哆醇、吡哆醛、吡哆胺;在体内以磷酸脂形式存在。
维生素B12在体内转变成2种辅酶形式,参与3种类型的反应:①分子内重排;②核苷酸还原成脱氧核苷酸;③甲基转移。
生物素在种种酶促羧化反应中作为活动羧基载体。
叶酸除了CO2外,是所有氧化水平碳原子一碳单位的重要受体和供体。四氢叶酸是叶酸的活性辅酶形式。
硫辛酸常不游离存在,而同酶分子中赖氨酸残基的ε-NH2以酰胺键共价结合,是一种酰基载体。
维生素C具有机酸性质,有防治坏血病功能。
2.对下列每一个酶促反应,写出参与反应的辅酶。
3.为谷氨酸变位酶反应选择一种适宜的辅酶并写出一个正确的机制:[化学方程式略] 解:该反应适宜的辅酶可为5ˊ-脱氧腺苷钴胺素,重排机制:Co-碳键裂解,钴还原成Co2+状态,产生一个-CH2基,从底物吸取氢原子形成5ˊ-脱氧腺苷,并脱离底物上的基团(未成电子对),该中间物重排,-CH2-从一个碳原子移动到另一个碳原子,随后氢原子从5ˊ-脱氧腺苷是甲基转移,5ˊ-脱氧腺苷钴胺素重生。
T4、T5、T6与T3同类,略。
7.蛋清可防止蛋黄的腐败,将鸡蛋贮存在冰箱4-6周不腐败。而分离的蛋黄(没有蛋清)甚至在冷冻下也迅速腐败。
(1) 腐败是什么引起的?
(2) 你如何解释观察到的蛋清存在下防止蛋黄腐败? 答:(1)细菌生长;
(2)抗生物素蛋白结合生物素抑制细菌生长 。
8.肾营养不良(renal osleodystrophy)也叫肾软骨病,是和骨的广泛脱矿物质作用相联系的一种疾病,常发生在肾损伤的病人中。什么维生素涉及到肾的矿质化?为什么肾损伤引起脱矿物质作用?
答:1,25-二羟维生素D3能诱导钙结合蛋白(CaBP)的合成和促进Ca-ATP酶的活性,这都有利于Ca2+的吸收。它也能促进磷的吸收;促进钙盐的更新及新骨的生成;促进肾小管细胞对钙磷的重吸收,减少从尿中排出。1,25-二羟维生素D3的主要靶细胞是小肠粘膜、骨骼和肾小管,肾损伤将影响1,25-二羟维生素D3的作用,故会引起脱矿物质作用。
9.一个临床病人由于代谢紊乱引起酸中毒,即低血和低尿pH。病人体液中化学分析显示分泌大量的甲基丙二酸。将这种化合物饲喂动物时,可以转变成琥珀酸。对于这一观察你能提供营养上的解释吗?
答:VB12(钴氨素)的缺乏,导致以腺苷钴氨素为辅因子的甲基丙二酸单酰CoA变位酶的酶促反应受阻,奇数碳脂肪酸代谢产生的丙酰CoA羧化生成甲基丙二酸单酰CoA后,无法进一步生成琥珀酰CoA而进入柠檬酸循环,于是在体内堆积。
10.四氢叶酸(THF)都以何种形式传递一碳单位?
答:四氢叶酸(THF)传递一碳单位的形式有:N5-甲基-THF、N5,N10-亚甲基-THF、N5-甲酰基-THF、N10-甲酰基-THF、N5-亚胺甲基-THF、N5,N5-次甲基-THF。
第12章 核酸通论
1.核酸是如何被发现的?为什么早期核酸研究的进展比蛋白质研究缓慢? 答:1868年瑞士青年科学家F.Mescher由脓细胞分离得到细胞核,并从中提取出一种含磷量很高的酸性化合物,称为核素。
核酸中的碱基大部分由Kossel等所鉴定。1910年因其在核酸化学研究中的成就授予他诺贝尔医学奖,但他却认为决定染色体功能的是蛋白质,以后转而研究染色体蛋白质。Levene对核酸的化学结构以及核酸中糖的鉴定作出了重要贡献,但是他的“四核苷酸假说”认为核苷酸中含等量4种核苷酸,这4种核苷酸组成结构单位,核酸是由四核苷酸单位聚合而成。照这一假说,核酸只是一种简单的高聚物,从而使生物学家失去对它的关注,严重阻碍核酸的研究。当时还流行一种错误的看法,认为胸腺核苷酸代表动物核苷酸,酵母核苷酸代表植物核苷酸,这种观点也不利于对核酸生物功能的认识。
2.Watson和Crick提出DNA双螺旋结构模型的背景和依据是什么?
答:背景:20世纪上半叶,数理学科进一步渗入生物学,生物化学本身是一门交叉学科,也就成为数理学科与生物学之间的桥梁。数理学科的渗入不仅带来了新的理论和思想方法,而且引入了许多新的技术和实验方法。
依据:已知核酸的化学结构知识;E.Chargaff发现的DNA碱基组成规律;M.Wilkins和R.Franklin得到的DNA X射线衍射结果。此外,W.T.Astbury对DNA衍射图的研究以及L.Pauling提出蛋白质的α-螺旋结构也都有启发作用。
2.为什么科学界将Watson和Crick提出DNA双螺旋结构模型评为20世纪自然科学最伟大的成就之一?
答:因为DNA双螺旋结构模型的建立说明了基因的结构、信息和功能三者之间的关系,使当时分子生物学先驱者形成的三个学派(结构学派、信息学派和生化遗传学派)得到统一,并推动了分子生物学的迅猛发展。
4.什么是DNA重组技术?为什么说它的兴起导致了分子生物学的第二次革命?
答:DNA重组技术——在细胞体外将两个DNA片段连接成一个DNA分子的技术。在适宜的条件下,一个重组DNA分子能够被引入宿主细胞并在其中大量繁殖。
DNA重组技术极大推动了DNA和RNA的研究,改变了分子生物学的面貌,并导致了一个新的生物技术产业群的兴起,所以被认为是分子生物学的第二次革命。
5.人类基因组计划是怎样提出来的?它有何重大意义?
答:1986年,著名生物学家、诺贝尔奖获得者H.Dubecco在Sience杂志上率先提出“人类基因组计划”,经过了3年激烈争论,1990年10月美国政府决定出资30亿美元,用15年时间(1990-2005年)完成“基因组计划”。
重大意义:人类对自己遗传信息的认识将有益于人类健康、医疗、制药、人口、环境等诸多方面,并且对生命科学也将有极大贡献。
6.为什么说生命科学已进入后基因时代?它的意思是什么?
答:由于技术上的突破,“人类基因组计划”进度一再提前,全序列的测定现已进入后基因组时代。意思:科学家的研究重心已从揭示基因组DNA的序列转移到在整体水平上对基因组功能的研究。
7.核酸可分为哪几种类?它们是如何分布的?
答:核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。
原核细胞中DNA集中在核区,其核细胞DNA分布在核内,病毒只含DNA或只含RNA,RNA存在于原核生物、真核生物或部分RNA病毒中。
8.如何证明DNA是遗传物质?
答:用35S和32P标记的噬菌体T2感染大肠杆菌,结果发现只有32P标记的DNA进入大肠杆菌细胞内,而35S标记的蛋白质仍留在细胞外,由此证明:噬菌体DNA携带了噬菌体的全部遗传信息,DNA是遗传物质。
9.参与蛋白质合成的三类RNA分别起什么作用?
答:rRNA起装配和催化作用;tRNA携带氨基酸并识别密码子;mRNA携带DNA的遗传信息并作为蛋白质合成的模板。
10.如何看待RNA功能的多样性?它的核心作用是什么?
答:RNA有5类功能:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③基因表达与细胞功能的调节;④生物催化与其他细胞持家功能;⑤遗传信息的加工与进化。核心作用是:遗传信息由DNA到蛋白质的中间传递体。
第13章 核酸的结构
1.比较DNA和RNA在化学结构上、大分子结构上和生物学功能上的特点。 答:DNA的一级结构中组成成分为脱氧核糖核苷酸,核苷酸残基的数目由几千至几千万个;而RNA的组成成分是核糖核苷酸,核苷酸数目仅有几十到几千个。另外在DNA分子中A=T,G=C,而在RNA分子中A≠U,G≠C。
二者的相同点在于:它们都是以单核苷酸作为基本组成单位,核苷酸残基之间都是由3,5-磷酸二酯键连接的。
二级结构:DNA是双链分子,2条链之间通过氢键和碱基完全配对(A-T,G-C)形成双螺旋的二级结构,一般是右手螺旋,也有左手螺旋。RNA是单链分子,分子内部的不同部位(有的近距离,也有远距离)能够通过碱基发生配对(A-U,G-C和G-U),形成既有单链,又有双链的RNA二级结构,RNA二级结构元件有:茎环(发夹)结构、内部环结构、分支环结构和中心环结构等。
2.从已经揭示的人类基因组结构有何特点?
答:人类细胞有23对染色体,单倍体基因组大约有3×109碱基对。
3.原核生物与真核生物mRNA有何特点?
答:原核生物以操纵子为转录单位,产生顺反子mRNA,即一条mRNA链上有多个编码区,5ˊ端和3ˊ端各有一段非翻译区(UTR)。原核生物mRNA,包括噬菌体RNA,都无修饰碱基。
真核生物的mRNA都是单顺反子,5ˊ端有帽子(cap)结构,然后依次是5ˊ非编码区、编码区、3ˊ非编码区、3ˊ端为聚腺苷酸(poly(A))尾巴,其分子内有时还有极少甲基化的碱基。
4.DNA双螺旋结构类型有那些基本要点?这些特点能解释哪些基本的生命现象? 答:DNA双螺旋结构模型的基本要点有:
(1)两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手螺旋。 (2)嘌呤与嘧啶位于双螺旋的内侧,磷酸与核糖在外侧,彼此通过3’,5’-磷酸二酯键相连接,形成DNA分子的骨架,碱基平面与纵轴垂直,糖环平面则与纵轴平行。多核苷酸链的方向取决于核苷酸间磷酸二酯键的走向,习惯上以C3’-C5’为正向。两条链配对偏向一侧,形成一条大购和一条小沟。
(3)双螺旋的平均直径为2nm,两个相邻的碱基对之间的高度,即碱基堆积距离为0.34nm,两个核苷酸之间的夹角为36°,沿中心轴每旋转一周有10个核苷酸,每一转的高度(即螺距)为3.4nm。
(4)两条核苷酸依靠彼此碱基之间形成的氢键相联系而结合在一起。
(5)碱基在一条链上的排列顺序不受任何限制。但根据碱基配对原则,当一条多核苷酸链的序列彼此确定后,即可决定另一互补的序列。
解释生命活动:双螺旋DNA是储存遗传信息的分子,通过半保留复制,储存遗传信息,通过转录和翻译表达出生命活动所需信息(蛋白质和酶)。
5.应用DNA晶体X射线衍射技术分析DNA对Watson-Crik模型有何修正?比较A-DNA、B-DNA、Z-DNA的主要特点。 答:(1)Watson-Crick模型认为每一螺周含有10个碱基对,所以两个核苷酸之间夹角是36°。但在Dickerson的十二聚体中,两个碱基间的夹角可由28°至42°不等,实际平均每一螺周含10.4个碱基对。分子大小的各参数也随序列不同而有变动。
(2)Dikerson所研究的十二聚体结构中,组成碱基对的两个碱基分布并非在同一平面上,而是碱基对沿长轴旋转一定角度,从而使碱基对的形状像螺旋桨叶片的样子,故称螺旋桨状扭曲,这种结构可提高碱基堆积力,使DNA结构更稳定。 A-DNA、B-DNA、Z-DNA的主要特点: A型B型 Z型 外形 粗短 适中 螺旋方向 螺旋直径 碱基轴升 碱基夹角
细长
右手 右手 左手 2.55nm 2.37 1.84nm 0.23nm 0.34 0.38nm
32.7° 34.6° 60°(1)
每圈碱基数 11 10.4 12 螺距 2.53nm 3.54nm 4.56 轴心与碱基对 不穿过碱基对 碱基倾角 糖环折叠
穿过碱基对 不穿过碱基对
嘧啶C2’内式,嘌呤C3’内式
19° 1° 9° C3’内式 C2’内式
糖苷键构象 反式 反式 嘧啶反式,嘌呤顺式
大沟 很狭、很深 很宽、较深 平坦 小沟 很宽、浅 狭、深 较狭、很深
(1)注:Z-DNA的嘌呤和嘧啶核苷酸交替出现顺反式,故以二个核苷酸为单位,转角为60°
6.如果人体有1014个细胞,每一细胞DNA含量为6.4×109bp,试计算一下人体DNA的总长度为多少米?它相当于地球到太阳的距离(2.2×109 km)之几倍?[2.2×1014km,100倍] 解:6.4×109bp×0.34nm×1014个=2.2×1014m=2.2×1011km 2.2×1011÷2.2×109km=100倍。
7.何谓H-DNA?它有何生物学意义? 答:当DNA的一段多聚嘧啶核苷酸或多聚嘧啶核苷酸组成镜像重复时,可折回产生H-DNA。由于这种结构形成分子内三螺旋时胞嘧啶需发生H+化,故称为H-DNA。H-DNA存在于基因调控区和其他重要区域,从而显示出它具有重要生物学意义。实验表明,启动子的S1核酸酶敏感区存在一些短的、同向或镜像重复的聚嘧啶-嘌呤区,该区域可以形成H-DNA,因而产生可被S1酶消化的单链结构。
8.何谓Hoogsteen碱基对?它与Watson-Crick碱基对有何不同?
答:Hoogsteen于1963年首先描述了三股螺旋螺旋结构。在三股螺旋中,通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合。第三股的碱基可与Watson-Crick碱基对中的嘌呤碱形成Hoogsteen配对。Hoogstecn模型,即第三个碱基以A或T与A =T碱基对中的A配对;G或C与G≡C碱基对中的G配对,C必须质子化,以提供与G的N7结合的氢键供体,并且它与G配对只形成两个氢键(图13-10)。
9.病毒DNA有哪些种类?为什么病毒DNA的种类繁多、结构各异?
答:动物病毒DNA通常是环状双链或线型双链。前者如乳头瘤病毒、多瘤病毒、杆状病毒和嗜肝DNA病毒等。后者如痘病毒、虹彩病毒、庖疹病毒和腺病毒的DNA。痘病毒nNA的末端很特别,是封闭的,形成突环〔loop )。微小病毒科的病毒,如小鼠微小病毒(Minute virus of mice, MVM),却是线型单链DNA(linear single-stranded DNA),病毒粒子内正负链数量不同,末端常形成发夹结构。
植物病毒基因组大多是RNA, DNA较少见。少数植物病毒DNA或是环状双链,或是环状单链。
噬菌体DNA多数是线型双链,如λ噬菌体、T系列噬菌体,也有为环状双链如覆盖噬菌体PM2,或环状单链如微噬菌体φX174和丝杆噬菌体fd和M13。
10.细菌拟核的主要结构特点是什么?
答:拟核(nucleoid )约占细胞体积的三分之一,在细胞内紧密缠绕形成致密的小体。细菌的基因组为双链环状DNA,其上结合碱性蛋自和少量RNA,组成许多突一环(图13 - 15)。其DNA分子长度大约是其菌体长度的1000倍,所以必须以一定的组织结构压缩在细胞内。
11. DNA绕在组蛋白八聚体核心构成一个核小体,其△L0平均为-1.2,核小体链并无扭曲张力,为什么?试计算此DNA的超螺旋密度(每圈碱基对按10计算)。[ λ=0.06] 解:每个核小体重复单位DNA约占200bp,L0=200/10=20,λ=△L0/ L0=0.06
?
第19章 代谢总论
⒈怎样理解新陈代谢?
答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。它是由多酶体系协同作用的化学反应网络。新陈代谢包括分解代谢和合成代谢两个方面。 新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。②将外界引入的营养物质转变为自身需要的结构元件。③将结构元件装配成自身的大分子。④形成或分解生物体特殊功能所需的生物分子。⑤提供机体生命活动所需的一切能量。
⒉能量代谢在新陈代谢中占何等地位?
答:生物体的一切生命活动都需要能量。生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。如果没有能量来源生命活动也就无法进行.生命也就停止。
⒊在能量储存和传递中,哪些物质起着重要作用?
答:在能量储存和传递中, ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。
⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?
答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。 分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。酶的数量不只受到合成速率的调节,也受到降解速率的调节。合成速率和降解速率都备有一系列的调节机制。在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。
细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。
多细胞生物还受到在整体水平上的调节。这主要包括激素的调节和神经的调节。高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。人类还受到高级神经活动的调节。
除上述各方面的调节作用外,还有来自基因表达的调节作用。
代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。
⒌ 从“新陈代谢总论”中建立哪些基本概念?
答:从“新陈代谢总论”中建立的基本概念主要有:代谢、分解代谢、合成代谢、递能作用、基团转移反应、氧化和还原反应、消除异构及重排反应、碳-碳键的形成与断裂反应等。
⒍ 概述代谢中的有机反应机制。
答:生物代谢中的反应大体可归纳为四类,即基团转移反应;氧化-还原反应;消除、异构化和重排反应;碳-碳键的形成或断裂反应。这些反应的具体反应机制包括以下几种:酰基转移,磷酰基转移,葡糖基基转移;氧化-还原反应;消除反应,分子内氢原子的迁移(异构化反应),分子重排反应;羟醛综合反应,克莱森酯综合反应,β-酮酸的氧化脱羧反应。
⒎举列说明同位素示踪法和波谱法在生物化学研究中的重要作用。
答:同位素示踪法和波谱法生物化学中研究新陈代谢的两种重要方法。
同位素示踪法不改变被标记化合物的化学性质,已成为生物化学以及分子生物学的研完中一种重要的必不可少的常规先进技术。如:1945年 David Shemin和 David Rittenberg首先成功地用14C 和15N标记的乙酸和甘氨酸怔明了血红素分子中的全部碳原子和氮原子都来源于乙酸利甘氨酸; 胆固醇分子中碳原子的来源也是用同样的同位空示踪法得到闸明的。
核磁共振波谱法对于样品不加任何破坏,因此,在生物体的研究得到广泛的应用。例如 在生物化学、生理学以及医学等方面都广泛位用核磁共振波谱技术对生活状态的人体进行研究,取得了重要的研究成果,其中最为人知的实验是1986年用核磁共振波谱法对人体前臂肌肉在运动前和运动后的比较研究。
第20章 生物能学
⒈就某方面而言,热力学对生物化学工作者更为重要,为什么?
答:生物能学是深人理解生物化学特别是理解主物机体新陈代谢规律不可缺少的基本知识。它是生物化学中涉及生活细胞转移和能量利用的基本间题。生物能学完全建立在热力学的基础上,因此,从这个角度看,热力学对生物化学工作者更为重要。
⒉考虑下面提法是否正确?
①在生物圈内,能量只是从光养生物到异养生物,而物质却能在这两类生物之间循环。 ②生物机体可利用体内较热部位的热能传递到较冷的部位而做功。 ③ 当一个系统的熵值降低到最低时,该系统处于热力学平衡状态。 ④当Δ G0’值为0.0时,说明反应处于平衡状态。 ⑤ ATP水解成ADP的反应,Δ G0’约等于Δ G0。 答:①-是, ②- 非,③-非 ,④- 非,⑤-非
⒊怎样可判断一个化学反应能够自发进行?
答:一个化学反应的自由能是否降低是判断它是否可以自发进行的标准。只有自由能变化为负值的化学反应,才能自发进行。
⒋怎样判断一个化学反应进行的方向?当反应物和产物的起始浓度都为1mol时,请判断下列反应的进行方向。(参看表20-3中的数据) 。 ①磷酸肌酸+ADP ????→ ATP+肌酸
② 磷酸烯醇式丙酮酸+ADP ????→丙酮酸+ATP
③葡萄糖6-磷酸+ADP ????→ATP+葡萄糖
答:一个化学反应是从总能量高的体系向总能量低的体系变化,即可根据化学反应式两边体系总能量的大小来判断其方向。
根据表20-3中的数据:①-向右, ②-向右 ,③-向左。
⒌ 解释ATP的γ -磷酸基团转运到葡萄糖6-磷酸的磷酸脂键(Δ G0’=13.8kJ/mol)上,一般情况下,为什么在热力学上可行?逆反应是否可行?
答:由于ATP的γ -磷酸基团的Δ G0’=32.2kJ/mol大于葡萄糖6-磷酸的磷酸脂键的Δ G0’=13.8kJ/mol,因此,一般情况下,ATP的γ -磷酸基团转运到葡萄糖6-磷酸的磷酸脂键上在热力学上可行的。在某些情况下,当该反应的ΔG值为正值时,该反应的逆反应可行。
⒍从ATP的结构特点说明ATP在能量传递中的作用。
答:ATP也叫做腺苷三磷酸、三磷酸腺苷、腺三磷,是高能磷酸化合物的典型代表。高能磷酸化合物的特点是:它的高能磷酸键(也即酸酐键,用“~”表示),水解时释放出的化学能是正常化学键释放化学能的2倍以上(一般在20.92 kJ/mol以上)。ATP是由一分子腺嘌呤、一分子核糖和三个相连的磷酸基团构成的。这三个磷酸基团从与分子中腺苷基团连接处算起,依次分别称为 α、β、γ磷酸基团。ATP的结构式是:
分析ATP的结构式可以看出,腺嘌呤与核糖结合形成腺苷,腺苷通过核糖中的第5位羟基,与3个相连的磷酸基团结合,形成ATP。ATP分子既可以水解一个磷酸基团(γ磷酸基团),而形成二磷酸腺苷(ADP)和磷酸(Pi);又可以同时水解两个磷酸基团(β磷酸基团和γ磷酸基团),而形成一磷酸腺苷(AMP)和焦磷酸(PPi;AMP可以在腺苷酸激酶的作用下,由ATP提供一个磷酸基团而形成ADP,ADP又可以迅速地接受另外的磷酸基团而形成ATP。另外, ATP的Δ G0’值在所有含磷酸基团的化合物中处于中间位置。这使ATP有可能在磷酸基团转移中作为中间传递体而起作用。 ⒎ATP水解成ADP+Pi的Δ G0’是-30.5kJ/mol, ①试计算此反应中的平衡常数。
②此反应在细胞内是否处于平衡状态? 答:①K'eq=2.2×105 ; ②否]
⒏在细胞内是否ATP水解的Δ G0通常比Δ G0’更负?为什么?[是,Δ G'=Δ G0’+RTInK,Δ G'≈-41.84kJ/mol]
⒐利用表20-3的数据试计算:
ATP+丙酮酸????→磷酸烯醇式丙酮酸+ADP的反应在25℃下,其Δ G0’和K'eq值。若ATP与ADP之比为10时,求丙酮酸与磷酸烯醇式丙酮酸的平衡比。 答:Δ G0’=+31.38kJ/mol,K'eq=3.06×106,平衡比是3.82×104。
⒑假设有一个 由A向B的转化反应(A?→B),它的Δ G0’=20kJ/mol请计算: ①在达到平衡时[B]/[A]的比值。 ②假设A和B参加的反应与ATP水解为ADP和Pi同时进行,总反应是:
A+ATP+H2O ???→B+ADP+Pi
请计算此反应达平衡时[B]/[A]的比值,假设ATP 、ADP和Pi都是1mol浓度,请问在什么时候反应才达到到平衡? ③ 已知[ATP] 、[ADP]和[Pi]在生理条件下都远非1mol浓度。当和浓度依次为[ATP] 、[ADP]和[Pi]8.05mmol,0.93mmol和8.05mmol时,求出一个与偶联反应的[B]/[A]比值。 答:① 比值=3.1×10-4 ② [B]/[A]=69.4 ③[B]/[A]=7.5×104
第21章 生物膜与物质运输
⒈试述物质的被动运输和主动运输的基本特点。研究物质运输的意义是什么? 答:主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高浓度的一侧进行跨膜转运的方式,需要与某种释放能量的过程相偶联。主动运输过程可分为由
ATP直接提供能量和间接提供能量等基本类型。
被动运输包括简单扩散和载体介导的协助扩散,运输方向是由高浓度向低浓度,运输的动力来自物质的浓度梯度,不需要细胞提供代谢能量。
⒉什么是Na+泵和Ca+泵,其生理作用是什么?
答:Na+/K+泵是动物细胞中由ATP驱动的将Na+ 输出到细胞外同时将K+输入细胞内的运输泵,又称Na+泵或Na+/K+交换泵。实际上是一种Na+ /K+ ATPase。Na+ /K+ ATPase是由两个大亚基(α亚基)和两个小亚基(β亚基)组成。α亚基是跨膜蛋白,在膜的内侧有ATP结合位点,细胞外侧有乌本苷(ouabain)结合位点;在α亚基上有Na+和K+结合位点。其生理意义: Na+/K+ 泵具有三个重要作用, 一是维持了细胞Na+离子的平衡,抵消了Na+离子的渗透作用;二是在建立细胞质膜两侧Na+离子浓度梯度的同时,为葡萄糖协同运输泵提供了驱动力;三是Na+泵建立的细胞外电位,为神经和肌肉电脉冲传导提供了基础。
Ca2+-ATPase有10个跨膜结构域,在细胞膜内侧有两个大的细胞质环状结构,第一个环位于跨膜结构域2和3之间,第二个环位于跨膜结构域4和5之间。在第一个环上有Ca2+离子结合位点;在第二个环上有激活位点,包括ATP的结合位点。Ca2+-ATPase的氨基端和羧基端都在细胞膜的内侧,羧基端含有抑制区域。在静息状态,羧基端的抑制区域同环2的激活位点结合,使泵失去功能,这就是自我抑制。 Ca2+-ATPase泵有两种激活机制,一种是受激活的Ca2+/钙调蛋白(CaM)复合物的激活,另一种是被蛋白激酶C激活。当细胞内Ca2+浓度升高时,Ca2+同钙调蛋白结合,形成激活的Ca2+/钙调蛋白复合物,该复合物同抑制区结合,释放激活位点,泵开始工作。当细胞内Ca2+浓度下降时,CaM同抑制区脱离,抑制区又同激活位点结合,使泵处于静息状态。在另一种情况下,蛋白激酶C使抑制区磷酸化,从而失去抑制作用;当磷酸酶使抑制区脱磷酸,抑制区又同激活位点结合,起抑制作用。 Ca2+ 泵的工作原理类似于Na+/K+ ATPase。在细胞质膜的一侧有同 Ca2+结合的位点,一次可以结合两个 Ca2+, Ca2+结合后使酶激活,并结合上一分子ATP,伴随ATP的水解和酶被磷酸化,Ca2+泵构型发生改变,结合 Ca2+的一面转到细胞外侧,由于结合亲和力低Ca2+离子被释放,此时酶发生去磷酸化,构型恢复到原始的静息状态。 Ca2+ -ATPase每水解一个ATP将两个Ca2+离子从胞质溶胶输出到细胞外。
⒊试述Na+泵的生理机制。
答:Na+/K+ ATPase运输分为六个过程: ①在静息状态,Na+/K+泵的构型使得Na+ 结合位点暴露在膜内侧。当细胞内Na+浓度升高时,3个 Na+ 与该位点结合;② 由于Na+的结合,激活了ATP酶的活性, 使ATP分解, 释放ADP,α亚基被磷酸化; ③由于α亚基被磷酸化, 引起酶发生构型变化, 于是与Na+ 结合的部位转向膜外侧,并向胞外释放3个Na+ ;④膜外的两个K+同α亚基结合; ⑤ K+ 与磷酸化的Na+/K+ ATPase结合后, 促使酶去磷酸化;⑥ 去磷酸化后的酶恢复原构型, 于是将结合的K+ 释放到细胞内。每水解一个ATP, 运出3个Na+ , 输入2个K+ 。Na+ /K+泵工作的结果,使细胞内的Na+浓度比细胞外低10~30倍,而细胞内的K+浓度比细胞外高10~30倍。由于细胞外的Na+浓度高,且Na+是带正电的,所以Na+ /K+泵使细胞外带上正电荷。
⒋什么是胞吐作用和胞吞作用?它们有何共同特点?
答:细胞膜将外来物包起来送入细胞,称胞吞作用;某些代谢废物及细胞分泌物形成小泡从细胞内部移至细胞表面,与质膜融合后将物质排出,称胞吐作用。它们的共同特点是物质是通过胞膜的包裹来出入细胞的。
⒌试举列说明受体介导的胞吞作用的重要性。
答:某些大分子的内吞往往首先同质膜上的受体结合,然后质膜内陷形成衣被小窝,继之形成衣被小泡,这种内吞方式称受体介导的胞吞作用。
受体介导的胞吞作用对细胞非常重要,它是一种选择浓缩机制,既可保证细胞大量地摄入特定的大分子,同时又可避免吸入细胞外大量的液体。如低密脂蛋白、运铁蛋白、生长因子、胰岛素等蛋白类激素、糖蛋白等,都是通过受体介导的胞吞作用进入细胞的。
⒍生物膜运输的分子机制有几种主要假设?它们相互关系如何?
答:物质跨膜运输的分子机制大致可概括为3种主要假设模型:移动性载体模型、 孔道或通道模型和构象变化模型。
生物膜运输是生物膜研究中一个重要的而内容又非常广泛的领域,不可能用一种模型去根括迄今己知的多种运输体系的功能。这3种假设模型有许多不同点,如参与运输的实体在形态、结构以及运输方式等方面各有特点;但它们又有许多共同性和相关性,主要表现在这3种运输方式都有选择性和方向性。
第22章 糖酵解作用
⒈为什么应用蔗糖保存食品而不用葡萄糖?
答:糖酵解是生物最古老、最原始获得能量的一种方式。绝大多数微生物都具有利用糖酵解分解葡萄糖的能力,而蔗糖是一种非还原性二糖,许多微生物不能直接将其分解,因此,可利用蔗糖的高渗透压来抑制食品中细菌等有害微生物的生长。
⒉用14C标记葡萄糖的第一个碳原子,用做糖酵解底物,写出标记碳原子在酵解各步骤中的位置。
答:见P67 图22-1 糖酵解和发酵的全过程 ⒊写出从葡萄糖转变为丙酮酸的化学平衡式。
答:由葡萄糖转变为两分子丙酮酸包括能量的产生总的化学反应式为: 葡萄糖 + 2Pi + 2ADP + 2NAD+ 2丙酮酸 + 2ATP + 2NADH + 2H+ +2H2O 该反应的化学平衡式为:
K/eq=[丙酮酸]2[ATP]2[NADH]2[H+]2/[葡萄糖][Pi]2[ADP]2[NAD+]2
⒋已知ATP和葡萄糖6-磷酸在pH7和25 ℃时水解的标准自由能变化Δ G0’分别为-7.3和-3.183kcal/mol(1kcal=4.184kJ),计算己糖激酶催化的葡萄糖和ATP反应的Δ G0’和K'eq。 答: Δ G0’=-17.44KJ/mol=-4.162kcal; K'eq=1.125×103
⒌由丙酮酸转变为乳酸的标准自由能变化Δ G0’=-25.10KJ/mol,计算出由葡萄糖转变为乳酸的标准自由能变化。
答:Δ G0’=-56.48KJ/mol
⒍当葡萄糖的浓度为5mmol/L,乳酸的浓度为0.05mmol/L,ATP和ADP浓度都为2mmol/L,无机磷酸(Pi)的浓度为1mmol/L时,计算该由葡萄糖转变为乳酸的自由能(Δ G0’)变化。 答:Δ G0’=-113.80KJ/mol]
⒎参考表(22-2),计算在标准状况下当时, 磷酸烯醇式丙酮酸和丙酮酸的平衡比。 答:3.06×10-5
⒏若以14C标记葡萄糖的C3作为酵母的底物,经发酵产生的CO2和乙醇,试问14C将在何出发现?
答:14C将在CO2 中。
⒐总结一下在糖酵解过程磷酸基团参与了哪些反应,它所参与的反应有何意义? 答:在糖酵解过程磷酸基团参与5步反应。
(1)葡萄糖在已糖激酶的催化下,消耗一分子ATP,生成葡萄糖-6-磷酸;(2)果糖-6-磷酸在磷酸果糖激酶的催化下,消耗1分子ATP,生成果糖-1,6- 二磷酸;(3)甘油醛-3-磷酸在甘油醛-3-磷酸脱氢酶催化下,氧化为1,3二磷酸甘油酸;(4)1,3-二磷酸甘油酸在3-磷酸甘油酸激酶催化下,生成3-磷酸甘油酸和1分子的ATP;(5)2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸并在丙酮酸激酶催化下,生成丙酮酸和1分子的ATP。 在磷酸基团参与的这5步反应中,前3步是将高能磷酸键转移到相应的底物上,使底物的势能提高,使后续反应成为可能;后2步是将底物上的高能磷酸键转移到ADP分子上形成ATP,将糖酵解产生有能量贮存在ATP中。
⒑为什么砷酸是糖酵解作用的毒物?氟化物和碘乙酸对糖酵解过程有什么作用?
答:砷酸盐在结构和反应方面都和无机磷酸极为相似,因此.能代替磷酸进攻硫酯中间产物的高能键.产生1-砷酸-3-磷酸甘油酸。 砷酸化合物是很不稳定的化合物。它迅速地进行水解。其结果是:砷酸盐代替磷酸与甘油醛-3-磷酸结合并氧化,生成的不是1,3-二磷酸甘油酸,而是3-磷酸甘油酸。在砷酸盐存在下,虽然酵解过程照样进行,但是却没有形成高能磷酸键。即解除了氧化和磷酸化的偶联作用。因此说砷酸是糖酵解作用的毒物。
氟化物及碘乙酸是巯基酶的不可逆抑制剂,糖代谢中甘油醛-3-磷酸脱氢酶可被其抑制,从而抑制糖酵解。
⒒总结一下参与糖酵解作用的酶有些什么特点?
答:参与糖酵解作用的酶的催化过程表现出严格的立体专一性,其中两种激酶由底物引起酶分子的构象变化,防止了底物上高能磷酸基团向水分子的转移而且直接转移到ADP分子上。
⒓糖酵解过程有哪些金属离子参加反应,它们起什么作用?
答:糖酵解过程主要有镁离子等二价金属离子参加反应。它们的作用是与ATP或ADP分子结合,形成亲电中心,使ATP或ADP更易接受孤电子对的亲核进攻。
⒔概括除葡萄糖以外的其他单糖如何进入分解代谢的?
答:除葡萄糖以外的其他单糖如果糖、半乳糖、甘露糖等单糖都是通过转变为糖酵解的中间物之一而进入糖酵解的共同途径的。
如果糖磷酸化形成果糖-6-磷酸;半乳糖经多步反应,形成葡萄糖-6-磷酸;甘露糖经2 步反应生成果糖-6-磷酸。
第23章 柠檬酸循环
⒈从柠檬酸循环的发现历史中受到什么启发?
答:柠檬酸循环的发现历史表明,任何一项重大科学发现都绝非是一个人的成果。它凝聚着
许许多多科学家的艰辛劳动和成果积累。科技工作者只有在认真总结、分析前人工作的基础上不断发现问题,解决问题,才能在科学研究上有所成就。
⒉画出柠檬酸概貌图,包括起催化作用的酶和辅助因子。 答:见P98 图 23-3 柠檬酸循环
⒊总结柠檬酸循环在机体代谢中的作用和地位。
答:柠檬酸循环是绝大多数生物体主要的分解代谢途径,也是准备提供大量自由能的重要代谢系统,在许多合成代谢中都利用柠檬酸循环的中间产物作为生物合成的前体来源,从这个意义上看,柠檬酸循环具有分解代谢和合成代谢双重性或称两用性。柠檬酸循环是新陈代谢的中心环节。它们在循环过程中产生的还原型NADH和FADH2,进一步通过电子传递链和氧化磷酸化被再氧化,所释放出的自由能形成ATP分子。柠檬酸循环的中间产物在许多生物合成中充当前体原料。
⒋用标记丙酮酸的甲基碳原子(*CH3-C-COO-)当其进入柠檬酸循环转运一周后,标记碳 ‖
O
原子的命运如何?
答:标记碳原子出现在草酰乙酸的C2和C3部位。
⒌写出由乙酰-CoA形成草酰乙酸的反应平衡式。
答:2乙酰-CoA+2NAD++FAD+3H2O??→草酰乙酸+2CoA+NADH2+3H+
⒍在标准状况下苹果酸由NAD+氧化形成草酰乙酸的Δ G0’=+29.29kJ/mol。在生理条件下这一反应极易由苹果酸向草酰乙酸的方向进行。假定[NAD+]/[NADH]=8,PH=7,计算由苹果酸形成草酰乙酸两种化合物最低的浓度比值应是多少? 答:(苹果酸)/(草酰乙酸)>1.75×104
⒎乙酰-CoA的乙酰基在柠檬酸循环中氧化推动力是什么?计算其数值。
答:乙酰-CoA的乙酰基在柠檬酸循环中氧化推动力是释放出的标准自由能变化Δ G0’,其数值是-41kJ/mol。
⒏如果将柠檬酸和琥珀酸加入到柠檬酸循环中,当完全氧化为CO2、形成还原型NADH和FADH2,并最后形成H2O时需经过多少次循环? 答:柠檬酸3次需经过循环,琥珀酸需经过2次循环。
⒐丙二酸对柠檬酸循环有什么作用?为什么?
答:丙二酸进入柠檬酸循环后,会引起琥珀酸、α-酮戊二酸和柠檬酸的堆积,中止柠檬酸循环反应。
这是由于丙二酸结构类似于琥珀酸,也是个二羧酸,是琥珀酸脱氢酶的竞争性抑制剂,可以与琥珀酸脱氢酶的活性部位的碱性氨基酸残基结合,但由于丙二酸不能被氧化,使得循环反应不能继续进行。
第24章 生物氧化-电子传递链和氧化磷酸化作用
⒈什么是氧化-还原电势?怎样计算氧化-还原电势?
答:还原剂失掉电子的倾向(氧化剂得到电子的倾向)称为氧化-还原电势。 氧化-还原电势等于正极的电极势减去负极的电极势。
⒉将下列物质按照容易接受电子的顺序加以排列: a:α-酮戊二酸+ CO2 c:O2 b: 草酰乙酸 d:NADP+ 答:c>b>d>a
⒊在电子传递链中各个成员的排列顺序根据什么原则?
答:电子传递链中各个成员的排列顺序根据的原则是电子从氧化还原势较低的成员传递到氧化还原势较高的成员。
⒋在一个具有全部细胞功能的哺乳动物细胞匀浆中加入下列不同的底物,当每种底物完全被氧化为CO2 和H2O时,能产生多少ATP分子? ①葡萄糖 ⑤磷酸烯醇式丙酮酸 ②丙酮酸 ⑥柠檬酸
③ 乳酸 ⑦二羟丙酮磷酸
④果糖-1,6-二磷酸 ⑧NADH
答:根据P142 表24-5计算可得:上述8种物质完全被氧化CO2 和H2O时,能产生的ATP分子数分别为:①葡萄糖(30),②丙酮酸(12.5),③ 乳酸(15),④果糖-1,6-二磷酸(32),⑤磷酸烯醇式丙酮酸 (15),⑥柠檬酸(10),⑦二羟丙酮磷酸 (15),⑧NADH (2.5)。
⒌在生物化学中O2形成H2O所测得的标准氧化-还原电势为0.82V,而在化学测定中测得的数值为1.23V,这种差异是怎样产生的?
答:这种差异是由于在生物化学反应中,氧的还原不完全造成的。
⒍电子传递链和氧化磷酸化之间有何关系?
答:生物氧化亦称细胞呼吸,指各类有机物质在细胞内进行氧化分解,最终产生CO2和 H2O,同时释放能量(ATP)的过程。包括TCA循环、电子传递和氧化磷酸化三个步骤,分别是在线粒体的不同部位进行的。其中电子传递链和氧化磷酸化之间关系密切,电子传递和氧化磷酸化偶联在一起。根据化学渗透学说(电化学偶联学说),在电子传递过程中所释放的能量转化成了跨膜的氢离子浓度梯度的势能,这种势能驱动氧化磷酸化反应,合成ATP。即葡萄糖等在TCA循环中产生的NADH和FADH2只有通过电子传递链,才能氧化磷酸化,将氧化产生的能量以ATP的形式贮藏起来。
⒎解释下列的化合物对电子传递和氧化呼吸链有何作用?当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并分别加入下列化合物时,估计线粒体中的氧化呼吸链各个成员所处的氧化还原状态。
①DNP ⑤N3- ②鱼藤酮 ⑥CO
③抗霉素A ⑦寡霉素 ④CN-
答:DNP(二硝基苯酚,dinitrophenol):破坏线粒体内膜两侧的电化学梯度,而使氧化与磷酸化偶联脱离,是最常见的解偶联剂;鱼藤酮:抑制NADH→CoQ的电子传递;抗霉素A:抑制Cyt b→Cyt c1的电子传递;CN- 、N3- 、CO:抑制细胞色素氧化酶→O2;寡霉素
: 与F0结合结合,阻断H+通道,从而抑制ATP合成。 当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入DNP 时,电子传递链照常运转,但不能形成ATP;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入鱼藤酮时,会阻断电子从NADH到CoQ的传递,NADH处于还原状态,其后的各组分处于氧化状态;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入抗霉素A时,会阻断电子从Cyt b到Cyt c1的传递,Cyt b及其上游组分处于还原状态,Cyt c1及其下游组分处于氧化状态;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入CN- 、N3- 、CO时,会阻断电子从细胞色素氧化酶到O2的传递,Cyt c及其上游组分处于还原状态, O2处于氧化状态;当供给充分的底物包括异柠檬酸、Pi、ADP、O2,并加入寡霉素时,抑制氧的利用和ATP的形成,使电子传递链不能正常进行,各组分均处于还原状态。
⒏什么是磷/氧比(P/O比),测定磷/氧比有何意义?
答:磷氧比(P/O ratio) 指每吸收一个氧原子所酯化的无机磷分子数,即有几个ADP变成ATP,实质是伴随ADP磷酸化所消耗的无机磷酸的分子数与消耗分子氧的氧原子数之比。 测定磷/氧比的意义在于可以知道不同呼吸链氧化磷酸化的活力。
⒐P/O比、每对电子转运质子数之比(H+/2e)、形成一分子ATP所需质子数的比例、将ATP转运到细胞溶胶所需质子数之比(~ P/H+),它们之间是否有相关性? 答:这些比值之间是有关联的,但并不绝对。虽然电子转移伴随着ATP的合成,但不能仅以P/O比值作为ATP生成数的依据,而应考虑一对电子从NADH或FADH2传递到氧的过程中,有多少质子从线粒体基质泵出,以及有多少质子必须通过ATP合酶返回基质以用于ATP的合成,这样才能从本质上确定ATP的生成数量。目前被广泛接受的观点是:ATP、ADP和无机磷酸通过线粒体内膜的转运是由ATP-ADP载体和磷酸转位酶催化的。已知每合成1个ATP需要3个质子通过ATP合酶。与此同时,把一个ATP分子从线粒体基质转运到胞液需要消耗1个质子,所以每形成1个分子的ATP就需要4个质子的流动。因此,如果一对电子通过NADH电子传递链可泵出10个质子,则可形成2.5 个分子ATP;如果一对电子通过FADH2电子传递链有6个质子泵出,则可形成1.5个ATP分子。
⒑计算琥珀酸由FAD氧化和由NAD+氧化的 ΔG0'值(利用表24-1的数据)。设FAD/FADH2氧-还对的ΔE'0接近于0V。解释为什么在琥珀酸脱氢酶催化的反应中只有FAD能作为电子受体而不是NAD+? 答:据表24-1的数据,琥珀酸由FAD氧化时,ΔG0'=-nF△E/0=-2*23062*(0.815+0.18)=-45.89 Kcal,琥珀酸由NAD+氧化时,ΔG0'=-nF△E/0=-2*23062*(0.815+0.32)=-52.35 Kcal,琥珀酸脱氢酶催化琥珀酸生成延胡索酸,其ΔG0'=-nF△E/0=-2*23062*(0.815+0.031)=-39.02 Kcal, 而当设FAD/FADH2氧-还对的ΔE'0接近于0V时,其ΔG0'=-nF△E/0=-2*23062*(0.815+0.0)=-37.59, 琥珀酸脱氢酶催化琥珀酸生成延胡索酸产生的自由能略大于FAD/FADH2氧-还对氧化时产生的自由能,小于NAD+氧化时产生的自由能,因此琥珀酸在琥珀酸脱氢酶催化的反应中只有FAD能作为电子受体而不是NAD+。
⒒电子传递链产生的质子电动势为0.2V,转运2、3、4个质子,温度为25℃,所得到的有效
自由能为多少?用这些能可合成多少ATP分子?
答:根据公式ΔG0'=nF△E/0?? , 电子传递链产生的质子电动势为0.2V,转运2、3、4个质子所能得到的有效自由能分别为:38.56 KJ/mol、57.84 KJ/mol、77.11 KJ/mol。由于在生理条件下合成一分子ATP大约需要40-50 KJ/mol的自由能,因此,转运2至3个质子,可合成1个ATP分子,转运4个质子大约可合成1-2个ATP分子。
第25章 戊糖磷酸途径和糖的其他代谢途径
⒈向含有戊糖磷酸途径全部有关酶和辅助因子的溶液中,加入在C6上具有放射性标记的葡萄糖,请问哪些物质上会有放射性标记? 答:核糖-5-磷酸C5出现放射性标记
⒉写出由葡萄糖-6-磷酸转变为核糖-5-磷酸,不必同时计算NADPH的化学方程式。 答:5葡萄糖-6-磷酸 ??→核糖-5-磷酸+ADP+H+)
⒊写出葡萄糖-6-磷酸合成NADPH而不涉及戊糖的化学方程式。 答:葡萄糖-6-磷酸+12NADPH+7H20 ??→ CO2+12NADPH+12H++Pi
⒋鸡蛋清中有一种对生物素亲和力极高的抗生物素蛋白。它是含生物素酶的高度专一的抑制剂,请考虑它对下列反应有无影响:
①葡萄糖 ??→丙酮酸 ②丙酮酸??→葡萄糖
③核糖-5-磷酸??→葡萄糖 ④丙酮酸??→草酰乙酸 答:生物素是丙酮酸羧化酶的辅基,该酶可羧化丙酮酸生成草酰乙酸并进而逐步生成葡萄糖。因此,鸡蛋清中对生物素亲和力极高的抗生物素蛋白对反应1和3无影响,对反应2和4有影响。
⒌计算从丙酮酸合成葡萄糖需提供多少高能磷酸键? 答:需6个高能磷酸键。
⒍维持还原型谷胱苷肽[GSH]的浓度为10mmol/L,氧化型[GSSH]的浓度为1mmol/L,所需的NADPH/NADP+比例应是多少?(参看第24章氧还电势表)
答:谷胱苷肽由NADPH还原的ΔE0'=+0.09V,因此ΔG0'=-4.15kcal/mol。相应的平衡常数为1126所需的[NADPH]/[NADP+]比值等于8.9×10-2。
⒎比较柠檬酸循环途径和戊糖磷酸途径的脱羧反应机制。
答:在柠檬酸循环途径有2步脱羧反应,其机制分别是:在异柠檬酸脱氢酶催化下,异柠檬酸脱氢被氧化成草酰琥珀酸,然后脱掉CO2并加上一H+,生成α-酮戊二酸;α-酮戊二酸地α-酮戊二酸脱氢酶系催化下,脱掉CO2,生成羟丁基-TPP,羟丁基-TPP与硫辛酰胺及CoA-SH 反应,生成琥珀酰-CoA。
戊糖磷酸途径的脱羧反应发生在6-磷酸葡萄糖生成核酮糖-5-磷酸的反应中,其机制为:葡萄糖-6-磷酸脱氢酶催化下,葡萄糖-6-磷酸形成6-磷酸葡萄糖酸-δ-内酯,6-磷酸葡萄糖酸-δ-内酯在一专一内酯酶作用下水解,形成6-磷酸葡萄糖酸,6-磷酸葡萄糖酸在6-磷酸葡萄糖酸脱氢酶作用下,形成核酮糖-5-磷酸。
⒏糖酵解 、戊糖磷酸途径和葡糖异生途径之间如何联系?
答:磷酸戊糖途径以葡萄糖-6-磷酸为起始物进入一个循环过程。该途径的第一阶段涉及氧化性脱羧反应,生成5-磷酸核酮糖和NADPH。第二阶段是非氧化性的糖磷酸酯的相互转换。由于转酮醇酶和转醛醇酶催化反应的可逆性,使磷酸戊糖途径与糖酵解以及糖的异生作用发生了密切的联系,各途径中的中间物如果糖-6-磷酸和甘油醛-3-磷酸等可以根据细胞的需要进入到对方代谢途径中去。
⒐比较糖醛酸循环和柠檬酸循环。糖醛酸的存在有何特殊意义?
答:糖醛酸途径(glucuronate pathway)是指从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP-葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。柠檬酸循环(citric acid cycle)是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。
糖醛酸的存在有何特殊意义有:在肝中糖醛酸与药物(含芳环的苯酚、苯甲酸)或含-OH、-COOH、-NH2、-SH基的异物结合成可溶于水的化合物,随尿、胆汁排出,起解毒作用;UDP糖醛酸是糖醛酸基的供体,用于合成粘多糖(硫酸软骨素、透明质酸、肝素等);从糖醛酸可以转变成抗坏血酸(人及灵长动物不能,缺少L-古洛糖酸内酯氧化酶);从糖醛酸可以生成5-磷酸木酮糖,可与磷酸戊糖途径连接。
⒑为什么有人不能耐受乳糖?而乳婴却靠乳汁维持生命?
答:有些人小肠中的乳糖酶活性很低或是没有,致使乳糖不能消化或是消化不完全,不能被小肠吸收。乳糖在小肠内会产生很强的渗透效应,流向大肠。在大肠内,乳糖被细菌转变为有毒物质,出现腹胀、恶心、绞痛以及腹泻等所谓乳糖不耐受症状。
由于绝大多数乳婴小肠中含有足够活性的乳糖酶,因此能消化乳糖,可能靠乳汁为生。
⒒糖蛋白中寡糖与多肽链的连接形式有几种类型?
答:糖蛋白中寡糖与多肽链的,简称糖肽键。糖肽链的类型可以概况为:
①N-糖苷键型:寡糖链(GlcNAC的β-羟基)与Asn的酰胺基、N-未端的a-氨基、Lys或Arg的W-氨基相连。
② O-糖苷键型:寡糖链(GalNAC的α-羟基)与Ser、Thr和羟基赖氨酸、羟脯氨酸的羟基相连。
③ S-糖苷键型:以半胱氨酸为连接点的糖肽键。
④ 酯糖苷键型:以天冬氨酸、谷氨酸的游离羧基为连接点。
⒓N-连寡糖和O-连寡糖的生物合成有何特点?
答:N-连寡糖和O-连寡糖的生物合成特点分别是N-糖链的合成是和肽链的生物合成同时进行的,而O-糖链的合成是在肽链合成后,对肽链进行修饰加工时将糖基逐个连接上去的。
第26章 糖原的分解和生物合成
⒈写出糖原分子中葡萄糖残基的连接方式。
答:糖原分子中葡萄糖残基的连接方式有两种,一种是以α(1,4)糖苷键连接,另一种是在多糖分子的分支处,以α(1,6)糖苷键连接。
⒉糖原降解为游离的葡萄糖需要什么酶?
答:糖原降解为游离的葡萄糖需要的酶有:糖原磷酸化酶、糖原脱支酶、磷酸葡萄糖变位酶和葡萄糖-6-磷酸酶。
⒊糖原合成需要什么酶?
答:糖原合成需要的酶有:UDP-葡萄糖焦磷酸化酶、糖原合成酶和糖原分支酶。
⒋从“O”开始合成糖原需要什么条件? 答:由于糖原合成酶只能催化将葡萄糖残基加到已经具有4个以上葡萄糖残基的葡聚糖分子上,因此,从“O”开始合成糖原需要有一种被叫做生糖原蛋白的“引物”存在。
⒌肾上腺素 、胰高血糖素对糖原的代谢怎样起调节作用?
答:机体血糖降低可引起胰高血糖素和肾上腺素分泌增加,此时细胞内cAMP含量增加,促使有活性的a激酶增加。a激酶一方面时糖原合酶磷酸化失去活性,一方面通过磷酸化酶b激酶使磷酸化酶变成有活性的磷酸化酶a,最终结果使糖原合成减少,糖原分解增加,使血糖升高。
当激素水平降低时,一方面由于已生成的cAMP被磷酸二酯酶分解为5、AMP,从而停止对糖原降解的刺激作用;另一方面又由于磷酸化酶a去磷酸化转变为磷酸化酶b而使糖原降解停止。
⒍血糖浓度如何维持相对稳定?
答:维持正常的血糖浓度对于维持机体的正常生命活动,特别是脑细胞的功能具有极其重要的意义。
血糖的来源主要是糖类食物(主要是淀粉)消化吸收后进入血液,其次为肝糖原和肌糖原分解为葡萄糖(糖原为多糖,又称动物淀粉),在饥饿时主要依靠糖异生,即从非糖物质(如氨基酸、甘油、乳酸等)转变为葡萄糖。糖类食物消化后的产物葡萄糖吸收入血后,在胰岛素的作用下,一部分进入组织细胞氧化分解释放出能量,供细胞利用;剩余部分在肝脏和肌肉合成肝糖原和肌糖原贮存起来,因此,血糖不断被组织细胞利用,肝糖原和肌糖原又不断分解释放葡萄糖入血,维持血糖浓度的相对稳定。
但肝脏和肌肉贮存糖原的量有限,如果消化道不继续吸收葡萄糖入血(饥饿不进食时),血糖势必要降低。在这种情况下体内的脂肪便开始分解,成为体内能量的主要来源。脂肪分解产生的甘油经糖异生转变为葡萄糖,产生的脂肪酸可被体内大多数组织细胞(脑细胞除外)利用,这样又可节省部分葡萄糖为脑细胞利用,也可减少或不动用蛋白质。如果饥饿时间较长,不但脂肪分解,而且体内蛋白质也分解,分解产生的氨基酸也经糖异生转变为葡萄糖,以维持基本的血糖水平。通过糖原分解、糖异生及动用脂肪,即使饥饿几天后,血糖浓度也仅降低百分之几。
⒎将一肝病患者的糖原样品与正磷酸 、磷酸化酶 、脱支酶(包括转移酶)共同保温,结果得到葡萄糖-1-磷酸和葡萄糖的混合物二者的比值: 葡萄糖-1-磷酸
??????? =100,试推测该患者可能缺乏哪种酶? 葡萄糖
答:患者缺乏脱支酶。
第27章 光合磷酸化
⒈根据放氧测定绿色植物的光合作用速率当用680nm波长的光照射时比用700nm光时高,但用这两种光一起照射时给出的光合作用速率比单独使用这两种波长光中的任一种光时高。请解释。
答:这是由于放氧的光合细胞有两个光反应的参与,一个是利用700 nm 波长的光,另一个利用 680 nm 波长的光。当用这两种光一起照射时,这两种波长的光互相协作,产生“Emerson 增益效应”,使给出的光合作用速率比单独使用这两种波长光中的任一种光时高。
⒉光系统I中处于基态的P700,E0'为+0.4V,当受700nm光激发时转变为P700*,E0'为-1.0V。在此光反应中P700为捕获光能的效率是多少?
答:在此光反应中P700为捕获光能的效率是79%。
⒊当光系统I在标准条件下吸收700nm红光时P700的标准还原电势E0'由+0.4V变为-1.2V。被吸收的光能有百分之多少以NADPH(E0'=-0.32V)形式被储存? 答:被吸收的光能有45%以NADPH(E0'=-0.32V)形式被储存。
⒋在无ADP和Pi存在下用光照射菠菜叶绿体,然后停止光照(在暗处),加入ADP和Pi。发现在短时间内有ATP合成。请解释原因。
答:这是由于用光照射菠菜叶绿体时,质子通过叶绿体的类囊体膜,进入类囊体腔,形成跨膜pH梯度。在暗处加入ADP和Pi后,质子通过ATP合酶从膜内流向膜外,推动ADP和Pi合成ATP。
⒌如果水的光诱导氧化反应(引起放氧)的ΔG0'为-25kJ/mol。光系统Ⅱ中光产生的最初氧化剂的E0'值是多少?
答:光系统Ⅱ中光产生的最初氧化剂的E0'值是+0.88V。
⒍在充分阳光下,25℃,pH7的离体叶绿体中ATP 、ADP和Pi的稳态浓度分别为3mmol/L 、0.1mmolL和10mmol/L。 ① 在这些条件下,合成ATP反应的ΔG是多少?②在此叶绿体中光诱导的电子传递提供ATP合成所需的能量(通过质子动势),在这些条件下合成ATP所需的最小电势差(ΔE0')是多少?假设每产生1分子ATP要求2e-通过电子传递链。 答:①在这些条件下,合成ATP反应的ΔG是50.3 kJ/mol;②在这些条件下合成ATP所需的最小电势差(ΔE0')是0.26V。
⒎如果非循环光合电子传递导致3H+/e-的跨膜转移,循环光合电子传递导致2H+/e-的跨膜转移。问①非循环光合磷酸化的和 ②循环光合磷酸化的ATP合成效应(以合成一个ATP所需吸收的光子表示)是多少?(假设CF1CF0ATP合酶产生1ATP/3H+)。 答:① 2hv/ATP;②1.5hv/ATP。
⒏真核光养生物非循环光合电子传递中ATP/2e-的实际比值并不确定。试计算从光系统Ⅱ到光系统Ⅰ的光合电子传递中ATP/2e-的最大理论比值。假设在细胞条件下,生成ATP的ΔG为+50kJ/mol,并假设ΔE≈ΔE0'。(提示:P680+/P680电对和P700+/P700电对的ΔE0'分别为-0.6V和+0.4V)
答:从光系统Ⅱ到光系统Ⅰ的光合电子传递中ATP/2e-的最大理论比值是3.9。
⒐如果使用碳1位上标记14C的核酮糖-5-磷酸作为暗反应底物。3-磷酸甘油酸的哪位碳将被标记?
答:碳3 将被标记。
⒑在1轮循环中将有6μmolCO2和6μmol未表标记的核酮糖-1,5-二磷酸(RuBP)发生反应,产生1μmol葡糖-6-磷酸,并重新生成6μmolRuBP。问: ① 在重新生成的RuBP哪两个碳原子将不被标记;
②在重新生成的RuBP中其它3个碳原子各自被标记的百分数是多少?
答:①C3和C4不被标记; ②1/6在C1,1/6在C2,3/6在C3。其余1/6被等分地标记在葡糖-6-磷酸的C3和C4上。
第28章 脂肪酸的分解代谢
⒈说明经典的Knoop对脂肪酸氧化的实验和结论。比较他的假说与现代β -氧化学说的异同。
答:Knoop 用把偶数或奇数碳的脂肪酸分子末端甲基接上苯基,用这带“示踪物”的脂肪酸喂狗,然后分析排出的尿液,示踪物苯基在体内不被代谢,而以某一特定的有机化合物被排出。Knoop的实验结论是:脂肪酸氧化每次降解下一个2碳单元的片段,氧化是从羧基端的β-位碳原子开始的,释下一个乙酸单位。
现代β -氧化学说支持Knoop的基本观点,但与现代β -氧化学说相比,Knoop的假说有以下差异:切下的两个碳原子单元是乙酰-C0A,而不是醋酸分子;反应系列中的全部中间产物是结合在辅酶A上的;降解的起始需要ATP的水解。
⒉计算一分子硬脂肪酸彻底氧化成CO2及H2O产生的ATP分子数,并计算每克硬脂肪酸彻底氧化的自由能。
答:一分子硬脂酸需要经过8轮β氧化,生成9个乙酰CoA,8个FADH2 和8NADH,9个乙酰CoA可生成ATP:10×9=90个;8个FADH2可生成ATP :1.5×8=12个;8个NADH可生成ATP:2.5×8=20个;以上总计为122个ATP,但是硬脂酸活化为硬脂酰CoA时消耗了两个高能磷酸键,一分子硬脂肪酸净生成120个ATP。(2)120个ATP水解的标准自由能为120×(-30.54)KJ=-3664.8KJ,硬脂肪酸的相对分子质量为256。故1克硬脂肪酸彻底氧化产生的自由能为-3664.8/256=-13.5KJ。
⒊说明肉碱酰基转移酶在脂肪酸氧化过程中的作用。
答:脂酰-C0A不能直接进入线粒体,它必须在肉碱酰基转移酶的催化下,转化为脂酰肉碱才能穿越线粒体内膜进行氧化。因此,肉碱酰基转移酶在脂肪酸氧化过程中起着重要的调控作用。
⒋说明辅酶维生素B12在奇数碳原子氧化途径中的功能。
答:奇数碳原子脂肪酸的氧化中,最后一步反应L-甲基丙二酰-CoA在甲基丙二酰变位酶作用下转化为琥珀酰 - CoA,这一酶促反应需要同时有维生素B12作为辅酶存在。
⒌说明在植烷酸的氧化中,α -氧化是必然的。
答:由于在C-3位上有一甲基取代基,因此植烷酸不属于β- 氧化的底物,它必须在α- 羟化酶作用下,在α位发生羟基化并脱羧形成植烷酸后才能进行氧化,即植烷酸的氧化中,α -氧化是必然的。
⒍如若膳食中只有肉 、蛋和蔬菜,完全排除脂质,会不会发生脂肪酸缺欠症?
答:由于有些脂肪酸在机体内不能合成或合成的量不足,因此,若膳食中只有肉 、蛋和蔬菜,完全排除脂质,会发生脂肪酸缺欠症。
⒎患者体内发生脂质积聚,经检测,脂质中具有半乳糖-葡萄糖神经酰胺的结构。试问是哪一步酶反映不能正常运行?
答:这是由于欠缺α- 半乳糖苷酶,导致三已糖神经酰氨不能降解造成的。
⒏是说明“酮尿症”的生化机制。
答:酮体是乙酰乙酸、β羟丁酸及丙酮的总称。
酮体为人体利用脂肪氧化物产生的中间的代谢产物,正常人产生的酮体很快被利用,在血中含量极微,约为2.0-4.0mg/L其中乙酰乙酸\\β羟丁酸\\丙酮各种分加约占20%、78%、2%。尿中酮体(以丙酮计)约为50mg/24h。定性测试为阴性。但在饥饿、各种原因引起的糖代谢发生障碍,脂分解增加及糖尿病酸中毒时,因产生酮体速度大于组织利用速度,可出现酮血症,继而发生酮尿(ketonuria,KET)。
⒐说明无活性维生素D3和活性维生素D3的结构关系。
答:活性维生素D3是指25-羟基维生素D3和1,25-羟基维生素D3,它们是由维生素D3(无活性)羟基化而成的。
第29章 脂类的生物合成
⒈试解释“三羧酸运送系统(tricarboxylate transport system)的作用机制和功能。 答:合成脂肪酸的原料是乙酰CoA,主要来自糖的氧化分解。此外,某些氨基酸分解也可提供部分乙酰CoA。以上过程都是在线粒体内进行的,而合成脂肪酸的酶却存在于胞液中,因此乙酰CoA必须进入胞液才能用于合成脂肪酸。乙酰CoA不能自由通过线粒体内膜,需借助于柠檬酸-丙酮酸循环(citrate pyruvate cycle)将乙酰CoA从线粒体内运出到胞液中。
首先在线粒体内,乙酰CoA与草酰乙酸经柠檬酸合酶催化缩合生成柠檬酸,再由线粒体内膜上相应载体协助进入胞液。在胞液内存在的柠檬酸裂解酶可使柠檬酸裂解产生乙酰CoA及草酰乙酸,前者可用于合成脂肪酸,后者可返回线粒体补充合成柠檬酸时的消耗。但草酰乙酸也不能自由通透线粒体内膜,故必需先经苹果酸脱氢酶催化,还原成苹果酸再经线粒体内膜上的载体转运入线粒体,经氧化后补充草酰乙酸。也可在苹果酸酶作用下,氧化脱羧生成丙酮酸,同时伴有NADPH的生成。丙酮酸可经内膜载体被转运入线粒体内,此时丙酮酸可再羧化转变为草酰乙酸。每经柠檬酸-丙酮酸循环一次,可使一分子乙酰CoA由线粒体进入胞液,同时消耗两分子ATP,还为机体提供了NADPH以补充合成反应的需要。 乙酰CoA需先羧化生成丙二酰CoA后才能进入合成脂肪酸的途径。乙酰CoA羧化酶是脂肪酸合成过程中的限速酶。此酶是变构酶。其无活性的单体与有活性的多聚体之间可以互变。柠檬酸与异柠檬酸可促进单体聚合成多聚体,增强酶活性,而长链脂肪酸可加速解聚,从而抑制该酶活性。乙酰CoA羧化酶还可依赖于cAMP的磷酸化及去磷酸化修饰来调节酶
活性。此酶经磷酸化后活性丧失。如胰高血糖素及肾上腺素等能促进这种磷酸化作用。从而抑制脂肪酸的合成;而胰岛素则能促进酶的去磷酸化作用,故可增强乙酰CoA羧化酶活性,加速脂肪酸合成。
⒉说明真核生物体内脂肪酸合酶的结构与功能。
答:真核生物体内脂肪酸合酶是多肽紧密协同的一个整体,共同作用完成脂酰CoA和丙二酸单酰CoA合成脂肪酸的催化过程,多肽链包括一个ACP和七个酶。 ACP的作用:以硫酯键的形式把脂酰基连接在复合物上。 七个酶及其作用分别是:
(1)乙酰 CoA:ACP 转酰酶(AT)(催化脂酰基转移)
(2)丙二酸单酰CoA:ACP 转酰酶(MT)(催化丙二酰基转移) (3)β-酮酰-ACP 合酶(KS)(催化脂酰基与丙二酰基缩合) (4)β-酮酰-ACP还原酶(KR)(催化酮基还原为羟基) (5)β-羟酰-ACP 脱水酶(HD)(催化脱水) (6) 烯酰-ACP 还原酶(ER)(催化双键还原) (7) 脂酰-ACP硫酯酶 (催化释放脂肪酸)
⒊试比较脂肪酸合成与脂肪酸β-氧化的异同。
答:脂肪酸合成与脂肪酸β-氧化的差异主要表现在以下几个方面 (1)细胞定位不同:胞质中;线粒体 (2)酰基载体不同:ACP;COA
(3)发生的反应不同:缩合、还原、脱水、再还原;脱氢、水化、再脱氢、硫解 (4)参与酶类不同:2种酶系;5种
(5)辅因子不同:NADPH;FAD,NAD+ (6)ATP不同:耗7ATP;生成130ATP (7)方向不同:甲基端向羧基端;相反
⒋脂肪酸合成中的碳链延长在线粒体中和在内质网中的机制有何不同?
答:生物体内有两种不同的酶系可以催化碳链的延长,一是线粒体中的延长酶系,另一个是粗糙内质网中的延长酶系。
线粒体脂肪酸延长酶系:以乙酰CoA为C2供体,不需要酰基载体,由软脂酰CoA与乙酰CoA直接缩合。线粒体的基质中进行,只能在C12,C14,C16的基础上逐步添加C2物,生成长链脂肪酸。需acetyl CoA, NADH, NADPH。反应为?β-氧化的逆过程,只有个别反应不同,即脂酰CoA 脱氢酶不参与逆反应,合成时由烯脂酰CoA还原酶催化,需NADPH而不是FADH2。
内质网脂肪酸延长酶系:用丙二酸单酰CoA作为C2的供体,NADPH作为H的供体,中间过程和脂肪酸合成酶系的催化过程相同。
⒌乙酰-CoA羧化酶脂肪酸合成中起着调控作用,试述这个调控的机制。
答:乙酰CoA需先羧化生成丙二酰CoA后才能进入合成脂肪酸的途径。乙酰CoA羧化酶是脂肪酸合成过程中的限速酶,是脂肪酸合成调控的关键所在。
乙酰CoA羧化酶是变构酶。其无活性的单体与有活性的多聚体之间可以互变。柠檬酸与异柠檬酸可促进单体聚合成多聚体,增强酶活性,而长链脂肪酸可加速解聚,从而抑制该酶活性。乙酰CoA羧化酶还可依赖于cAMP的磷酸化及去磷酸化修饰来调节酶活性。此酶经磷
酸化后活性丧失。如胰高血糖素及肾上腺素等能促进这种磷酸化作用,从而抑制脂肪酸的合成;而胰岛素则能促进酶的去磷酸化作用,故可增强乙酰CoA羧化酶活性,加速脂肪酸合成。
⒍磷脂的特征是在C2位上有一不饱和脂肪酸。举一磷脂实例。它在C2位上是饱和脂肪酸,这样的结构是怎样合成的?
答:二软脂酰磷脂在C2位上有一不饱和脂肪酸。这样的结构是通过在磷脂酰胆碱的sn1和sn2上发生脂肪酸取代反应形成的。
⒎试述以CDP二脂酰甘油为起始物,3种甘油磷脂(磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油)的生物合成路线。
答:CDP -二脂酰甘油在磷脂酰苷油磷酸合酶催化下,生成磷脂酰丝氨酸,磷脂酰丝氨酸在磷脂酰丝氨酸脱羧酶催化下,脱羧生成磷脂酰乙醇胺;
CDP -二脂酰甘油在磷脂酰丝氨酸合酶催化下,生成磷脂酰苷油酸,磷脂酰苷油酸在磷脂酰苷油酸磷酸酶催化下,生成磷脂酰苷油;
磷脂酰苷油在二磷脂酰苷油合酶催化下,生成二磷脂酰苷油。
⒏\血小板活化因子(platelet activating factor,PAF)\为何物?用二羟丙酮磷酸为原料如何实现它?
答:血小板活化因子是1- 烷基 – 2 - 乙酰基 – 苷油磷酸胆碱。
血小板活化因子的合成过程与上述磷脂合成过程类似,二羟丙酮磷酸在酰基转移酶催化下,转变生成脂酰磷酸二羟丙酮以后,由一分子长链脂肪醇取代其第一位脂酰基,其后再经还原(由NADPH供H)、转酰基等步骤合成磷脂酸的衍生物。此产物替代磷脂酸为起始物,沿甘油三酯途径合成胆碱或乙醇胺缩醛磷脂。血小板活化因子与缩醛磷脂的不同在于长链脂肪醇是饱和长链醇,第2位的脂酰基为最简单的乙酰基。
⒐试述以软脂酰-CoA和丝氨酸为起始物,鞘磷脂和葡糖-神经下酰胺的生物合成路线。 答:P277 图 29-30 。
⒑低剂量的阿司匹林(如隔日一粒)有防止心脏病突发的功能。如每日服用3-4粒,为什么反而事得其反?(揭示:TXA2生成于血小板中,PGI2生成于动脉壁上)
答:由于阿司匹林能抑制环加氧酶的活性,进而减少血栓烷如TXA2等的生成,从而可防止心脏病的突发。同时,大剂量的阿司匹林可降低动脉6一酮一前列腺素F的水平,使血管血流量增大,增加心脏的负担,因此有可能导致心脏病的突发。
⒒培养肝细胞时加入2-[14C]醋酸。14C标记在HMG-CoA什么位置上? 答:14C标记在HMG-CoA中异戊二烯单元的C2和C4的位置上。
⒓试述Wolman's病的症候和病因。将患者的皮肤的成纤维细胞进行培养,HMG-CoA的活性变高,还是变低?在培养基中LDL-受体的数量是减?
答:Wolman's病的特征是在不同组织中胆固醇酯和三脂酰苷油的积聚。其病因是溶酶体中酸性脂肪酶的完全缺乏。
将患者的皮肤的成纤维细胞进行培养,HMG-CoA的活性变高。在培养基中LDL-受体的数量是减少的。
⒔乙酰-CoA如何转化为甲羟戊酸?试述甲羟戊酸转化为(角)鲨烯的立体化学问题。 答:乙酰-CoA在硫解酶的反向催化下形成乙酰乙酰-CoA,乙酰乙酰-CoA和乙酰-CoA在HNG-CoA合酶催化下生成3-羟-3-甲基戊二酰-CoA,3-羟-3-甲基戊二酰-CoA在3-羟-3-甲基戊二酰-CoA还原酶催化下,生成甲羟戊酸。
甲羟戊酸转化为(角)鲨烯的过程中,有14步反应涉及到立本化学问题,从理论上讲,自甲羟戊酸到(角)鲨烯,有16384种异构件出现的可能性,但在生物体内实际上只有一种途径在出现,这是由于在反应中通过顺式消除、反式消除以及异构化反应中消除等方式解决了这些立体化问题。
⒕试综述低密度脂蛋白(LDL)的大体组成,体内的运送和生物功能。
答:低密度脂蛋白(LDL)由蛋白质、三脂酰苷油、胆固醇、胆固醇酯、磷脂类以及载脂蛋白等组成,密度在1.019-1.063克/毫升之间。
在动物体内,低密度脂蛋白可随血浆转移到肝脏、肾上腺和脂肪组织。其主要功能是把胆固醇从肝脏运送到全身组织。
第30章 蛋白质降解和氨基酸的分解代谢
⒈动物体内有哪些主要的酶参加蛋白质水解反应?总结这些酶的作用特点。
答:动物体内参加蛋白质水解的酶有胃蛋白酶、胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧肽酶及氨肽酶等。
胃蛋白酶催化具有苯丙氨酸、酪氨酸、色氨酸、亮氨酸、谷氨酸、谷氨酰胺等肽键的断裂;胰蛋白酶水解由赖氨酸、精氨酸的羧基形成的肽键;糜蛋白酶水解含有苯丙氨酸、酪氨酸、色氨酸等残基羧基形成的肽键;羧肽酶和氨肽酶则分别从肽段的C端和N端水解下氨基酸残基。
⒉氨基酸脱氨基后的碳链如何进入柠檬酸循环?
答:氨基酸脱氨基后的碳链分别经形成乙酰-CoA的途径、α- 酮戊二酸的途径、琥珀酰 – CoA的途径、延胡索酸途径及草酰乙酸途径进入柠檬酸循环。
⒊有一种遗传病人,在血浆中异戊酸的含量增高,可能影响了哪种氨基酸的代谢?如果这种氨基酸及其酮酸在血液中含量是正常的,可能缺乏哪一种酶?
答:① 亮氨酸;②异亮氨酰脱氢酶。
⒋写出苯丙氨酸在排氨动物和排尿苏动物体内完全氧化的平衡式,包括全部活化和能量储存步骤。
答:苯丙氨酸+10O2+46ADP+46Pi?→9CO2+NH2+45ATP+AMP+PPI+45H2O
⒌组氨酸分解代谢时,下面标出的原子会出现在谷氨酸的什么位置上?
答:1为氨基氮,5为а–碳原子,6为β–碳原子,8为γ–羧基碳原子,2,3原子不参加谷氨酸。
⒍写出丙氨酸转变为乙酰乙酸和尿素的总平衡式: 答:2丙氨酸+4NAD++3ATP+4H2O?
→乙酰乙酸+尿素
+CO2+4NADH+4H++2ADP+AMP+4Pi
⒎根据化学计算,在尿素合成中消耗了4个高能磷酸键能(-P),在此反应中天冬氨酸转变为延胡索酸,假设延胡索酸又转回天冬氨酸,尿素合成的化学计算结果如何?消耗了几个高能磷酸键?
答:延胡索酸形成天冬氨酸不影响尿素合成的化学计算,因此尿素合成的化学反应时仍为: CO2+N+H4+3ATP+3H2O+NAD++天冬氨酸?→尿素+2ATP+2Pi+PPi+NADH+H++草酰乙酸,因此共消耗了4个高能磷酸键。
⒏用成年大白鼠做同位素示踪实验,得到下面结果:肌酸分子中的标记原子是由下面所列的一些前体而来,从这样的实验结果设计一条肌酸合成的可能途径。
答:精氨酸和甘氨酸在左旋精氨酸-甘氨酸转脒基酶(L-AGAT)的催化下,合成胍乙酸,胍乙酸再经S-腺苷蛋氨酸-胍乙酸N-甲基转移酶(MT)的催化,甲基化形成肌酸。
⒐说明尿素形成的机制和意义。
答:尿素是通过尿素循环形成的。尿素循环亦称鸟氨酸循环,是排尿素动物在肝脏中合成尿素的一个循环机制。肝细胞胞浆中的氨基酸经转氨作用与α-酮戊二酸形成的谷氨酸,透过线粒体膜进入线粒体基质,在谷氨酸脱氢酶作用下脱氨形成游离氨。形成的氨(NH+4)与三羧酸循环产生的二氧化碳、2分子ATP,在氨基甲酰合成酶I的催化下生成氨基甲酰磷酸。氨基甲酰磷酸在线粒体的鸟氨酸转氨基甲酰酶的催化下,将氨基甲酰基转移给鸟氨酸生成瓜氨酸。瓜氨酸形成后即离开线粒体进入胞浆,在ATP的存在下,由精氨酸代琥珀酸合成酶的催化,与天冬氨酸缩合成精氨酸代琥珀酸。天冬氨酸在反应中作为氨基的供体。精氨酸代琥珀酸通过裂解酶的催化生成精氨酸和延胡索酸。精氨酸在胞浆精氨酸酶的催化下水解产生尿素和鸟氨酸。鸟氨酸可重新进入尿素循环。
蛋白质在体内分解成氨基酸,再分解产生氨,过量的氨具有神经毒性,氨的解毒是在肝内合成尿素,再随尿排出。因此,通过合成尿素可以维持正常的血氨水平。
第31章 氨基酸及其重要衍生物的生物合成
⒈那些氨基酸对人体是必需氨基酸?为什么有些氨基酸称为非必需氨基酸?
答:人体必需氨基酸共有8种:赖氨酸、色氨酸、苯丙氨酸、蛋氨酸、苏氨酸、异亮氨酸、亮氨酸、缬氨酸。
有些氨基酸在人体中能够合成,不一定非要从外界补充,这些氨基酸叫做非必需氨基酸。
⒉写出葡萄糖合成丙氨酸的总平衡式。
答:葡萄糖+2ADP+2Pi+2NAD++2谷氨酸???→2丙氨酸+2α -酮戊二酸+2ATP+2NADP+H+。
⒊在氨基酸生物合成中哪些氨基酸和柠檬酸循环有联系?哪些氨基酸和糖酵解过程以及五碳糖途径有直接联系?
答:在氨基酸生物合成中,谷氨酰胺、脯氨酸、精氨酸、天冬氨酸、甲硫氨酸、苏氨酸赖氨酸、天冬酰胺及谷氨酸和柠檬酸循环有联系。
丝氨酸、胱氨酸、丙氨酸、缬氨酸、亮氨酸、苯丙氨酸、酪氨酸、色氨酸、组氨酸和糖酵解过程以及五碳糖途径有直接联系。
⒋在下面的每个转变中是哪种叶酸的中间产物参与反应? ①甘氨酸???→丝氨酸(四氢叶酸) ② 组氨酸???→谷氨酰胺(四氢叶酸)
③高半胱氨酸???→甲硫氨酸(N5-甲基四氢叶酸)
⒌芳香族氨基酸生物合成的共同前体是什么?它们以哪种中间产物作为合成路线的分支点?
答:芳香族氨基酸生物合成的共同前体是莽草酸。它们以分支酸作为合成路线的分支点。
⒍缺乏苯丙氨酸羟化酶(苯丙氨酸单加氧酶)的病人为什么出现苯丙酮酸尿症? 答:苯丙酮酸不能形成酪氨酸则积累,经转氨形成苯丙酮酸,随尿排出。
⒎从漂白过的面粉中有时可分离到一种甲硫氨酸衍生物甲硫氨酸亚砜亚胺(methionine sulfoximine),它的结构如下:
NH2 H ‖ ∣ O=S-CH2-CH2-C-COO- ∣ ∣
CH3 NH2
甲硫氨酸亚砜亚胺
它可引起机体抽搐,是谷氨酸合成酶的强烈抑制剂。请提出这一抑制剂可能的作用机制。 O
‖ 答:甲硫氨酸亚砜亚胺与谷氨酸的差异仅在γ 位,一个是在亚砜亚胺{CH3-S=NH},一个是在
O ‖
羧基{-C-OH},甲硫氨酸亚砜亚胺经酶催化转变为甲硫氨酸亚砜亚胺磷酸,后者与谷氨酰胺结合成酶结合牢固。
⒏由N2到血红素(heme)在氮的流程中有哪些中间产物?
答:N2??→NH4+??→谷氨酸??→丝氨酸??→甘氨酸??→α- 氨基-β -酮己二酸(或称δ-氨基-γ -酮戊酸)??→5-氨基乙酰丙酸??→ 红血素。
第32章 生物固氮
⒈什么叫生物固氮?有何重要意义?
答:生物固氮是指固氮微生物将大气中的氮气还原成氨的过程。 氮是植物生长所必需的主要营养元素。在农业生产中,氮被视为衡量土壤肥力的一个重要指标,它是农作物获得长期稳定高产的基本条件。氮气占空气体积的80%,每平方米空气柱里就有8吨氮。然而对于绝大多数的生物来说,这些分子态氮是不能被利用的,只有通过工业或生物固定转化成其他化合物,才能进入生物体系统。有些微生物利用自己独特的固氮酶