三角形等高模型与鸟头模型
例题精讲
板块一 三角形等高模型
我们已经知道三角形面积的计算公式:三角形面积?底?高?2
从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);
这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生
1变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的,则三角形面积与原来的一
3样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.
在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图S1:S2?a:b
ABS1aS2bCD
③夹在一组平行线之间的等积变形,如右上图S△ACD?S△BCD;
反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.
【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶
6个面积相等的三角形.
4-2-2.三角形等高模型与鸟头模型 学生版 page 1 of 24
【例 2】 如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上.
⑴ 求三角形ABC的面积是三角形ABD面积的多少倍? ⑵ 求三角形ABD的面积是三角形ADC面积的多少倍?
A
BDC
【例 3】 如右图,ABFE和CDEF都是矩形,AB的长是4厘米,BC的长是3厘米,那么图中阴影部分的面
积是 平方厘米.
AEDBFC
【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积
是 平方厘米.
【巩固】如下图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则
它内部阴影部分的面积是 .
ABFDEC
G分别是长方形ABCD边上的中点,H为AD【例 4】 如图,长方形ABCD的面积是56平方厘米,点E、F、
边上的任意一点,求阴影部分的面积.
AEBHDGFC
4-2-2.三角形等高模型与鸟头模型 学生版 page 2 of 24
【巩固】图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正方形的边长是12,那么阴影部
分的面积是 .
ADGEBFC
【例 5】 长方形ABCD的面积为36cm2,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积
是多少?
AHDEGBFC
【例 6】 长方形ABCD的面积为36,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是
多少?
AHDEGB
【巩固】在边长为6厘米的正方形ABCD内任取一点P,将正方形的一组对边二等分,另一组对边三等分,
分别与P点连接,求阴影部分面积.
ADFC
PBC
【例 7】 如右图,E在AD上,AD垂直BC,AD?12厘米,DE?3厘米.求三角形ABC的面积是三角形EBC
面积的几倍?
4-2-2.三角形等高模型与鸟头模型 学生版 page 3 of 24
A
EBDC
【例 8】 如图,在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与?BEC等积的三角形一
共有哪几个三角形?
FADEBC
【巩固】如图,在?ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与?ABE等积的三角形一共
有哪几个三角形?
AEB
【巩固】如图,在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?
AOBCDDC
【例 9】 (第四届”迎春杯”试题)如图,三角形ABC的面积为1,其中AE?3AB,BD?2BC,三角形BDE
的面积是多少?
ABCDEA
?ABC【例 10】 (2008年四中考题)如右图,AD?DB,AE?EF?FC,已知阴影部分面积为5平方厘米,
的面积是 平方厘米.
BD
AEFC
【巩固】图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF
长的3倍.那么三角形AEF的面积是多少平方厘米?
4-2-2.三角形等高模型与鸟头模型 学生版 page 4 of 24