工程力学(一)习题集及部分解答指导

解题提示

主矢的大小及方向的计算方法: FRx′=∑Fx FRy′=∑Fy

大小:

FR′= √(∑Fx)2+(∑Fy)2

方向:

tanα=∣∑Fy ∕ ∑Fx∣

α为主矢FR′与x轴所夹的锐角。

主矩的计算方法:MO=∑MO(F)。

图2-1

2-2.如图2-2所示,已知q、a,且F=qa、M=qa2。求图示各梁的支座反力。

图2-2

解题提示

一、平面任意力系的平衡方程

基本形式: ∑Fx=0,∑Fy=0,∑MO(F)=0

二力矩式:∑Fx=0(或∑Fy=0),∑MA(F)=0,∑MB(F)=0 三力矩式:∑MA(F)=0,∑MB(F)=0,∑MC(F)=0 二、平面平行力系的平衡方程

基本形式:∑Fy=0 ∑MO(F)=0 二力矩式:∑MA(F)=0,∑MB(F)=0

三、求支座反力的方法步骤

1、选取研究对象,画其分离体受力图。 2、选择直角坐标轴系,列平衡方程并求解。

以2-2图c)为例 ①选AB梁为研究对象,画受力图c′) y ②选直角坐标系如图示,列平衡方程

并求解。 FAx x ∑Fx=0 FAx =0 (1) FAy FB

∑Fy=0 FAy –F+ FB – q(2a)= 0 (2) 图c′) ∑MA(F)=0 FB(2a)–F(3a)–q(2a)a+M=0 (3)

解方程组得: FAx =0,FAy =qa,FB =2qa

2-3.组合梁及其受力情况如图2-3所示。若已知F、M、q、a,梁的自重力忽略不计,试求A、B、C、D各处的约束反力。

图2-3

解题提示

物系平衡问题的分析方法有两种:①逐步拆开法②先整体后部分拆开之法;解题时具体采用哪一种方法,要从物系中具有局部可解条件的研究对象选取而定。

解2-3图b)

①分别选取CD杆、ABC杆为研究对象,画其受力图①、②。 (或分别选取CD杆、整体为研究对象,画其受力图①、③。) q F FC F q FAx M FAx M C D A B C A B C☉ D FC FD FAy FB FAy FB FD ①CD杆 ②ABC杆 ③组合梁整体

②列平衡方程并求解。 图①:

∑MD(F)=0 -FC a + qa*a/2 = 0 (1)

∑MD(F)=0 FD a - qa*a/2 = 0 (2) 图②:

∑Fx=0 FAx= 0 (3)

∑Fy=0 FAy+ FB – F - FC = 0 (4) ∑MA(F)=0 FB a – Fa - FC 2a - M= 0 (5)

FAx=0 FB=F+qa+ M/a FC=FD= qa/2 FAy=M/a - qa/2 。 #

四、应用题

2-4.试计算图2-4所示支 架中A、C处的约束反力。已

知G,不计杆的自重力。 解题提示

画AB杆分离体受力图、 列平衡方程求解。

图2-4

2-5.如图2-5所示,总重力G=160kN的水塔, 固定在支架A、B、C、D上。A为固定铰链支座, B为活动铰链支座,水箱右侧受风压为q=16kN/m。 为保证水塔平衡,试求A、B间的最小距离。 解题提示

取整体为研究对象、画其分离体受力图、 列平衡方程求解。

图2-5

2-6.如图2-6所示,汽车起重机的车重力WQ=26kN,臂重力G=4.5kN,起重机旋转及固定部分的重力W=31kN。设伸臂在起重机对称平面内,试求在图示位置起重机不致翻倒的最大起重载荷Gp。 解题提示

这是一个比较典型的平面平行力系 问题的实例。平面平行力系只有两个独 立的平衡方程,而此题取汽车起重机整 体为研究对象,由受力分析可知却有三 个未知力:A、B两处的法向反力及Gp。 故需考虑汽车起重机起吊时即将翻倒的 临界平衡状态,此时A点的反力为零,

从而列平衡方程可求得最大起重载荷Gp。 图2-6

解:取汽车起重机整体为研究对象, 考虑其起吊时即将翻倒的临界平衡状态, 画受力图,此时FA=0。

列平衡方程 ∑MA(F)=0

2WQ-2.5G-5.5Gp=0

Gp=7.41kN

FA FB 2-7.如图2-7所示,重力为G的球夹在墙和均质杆

之间。AB杆的重力为GQ=4G/3,长为l,AD=2l/3。已知 G、α=30°,求绳子BC和铰链A的约束反力。 解题提示

物系平衡问题的解题步骤: ①明确选取的研究对象及其数目。 ②画出各个研究对象的受力图。

③选取直角坐标轴,列平衡方程并求解。 解:

①分别取球、AB杆为研究对象,画受力 图2-7 图(a)、(b)。

②列平衡方程并求解。 由图(a)

∑Fy=0 FNDsinα-G =0 (1)

FND =2G FT B

由图(b) FNE O F′ND ∑Fx=0 FAx+FNDcosα - FT= 0 (2)

∑Fy=0 FAy- FNDsinα - GQ= 0 (3) FND D ∑MO(F)=0 (a) G FT lcosα –FND2l/3 –s GQ inα l/2=0 (4) GQ 解得: FAx A

FAx=0.192G, FAy=2.33G, FT=1.92G FAy (b)

2-8.在图2-8所示平面构架中,已知F、a。 试求A、B两支座的约束反力。 解题提示 方法一:

分别取AC杆、BC杆为研究对象,画其 受力图,列平衡方程求解。 方法二:

分别取BC杆、构架整体为研究对象,

画其受力图,列平衡方程求解。 图2-8

2-9*. 图2-9所示为火箭发动机试验台。发动机固定在台上,测力计M指示绳子的拉力为FT,工作台和发动机的重力为G,火箭推力为F。已知FTG、G以及尺寸h、H、a和b,试求推力F和BD杆所受的力。

解题提示 方法一:

分别取AC杆、工作台和发动机一体 为研究对象,画其受力图,列平衡方程求 解。

方法二:

分别取结构整体、工作台和发动机一 体为研究对象,画其受力图,列平衡方程

求解。 图2-9

2-10*. 图2-10所示为一焊接工作架 简图。由于油压筒AB伸缩,可使工作台 DE绕O点转动。已知工作台和工件的重 力GQ=1kN,油压筒AB可近似看作均质

联系客服:779662525#qq.com(#替换为@)