¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ 2003¼¶
2003¼¶¡¶¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ¡·ÆÚÄ©¿¼ÊÔÊÔ¾í£¨ A£©
רҵ ÐÕÃû ѧºÅ ¿¼ÊÔÈÕÆÚ£º2004.12.19
Ìâ Ò» ¶þ Èý ËÄ Îå Áù Æß °Ë ¾Å ×Ü·Ö ºÅ µÃ ·Ö ˵Ã÷£º1. ±¾ÊÔ¾í¹²5Ò³£» 2. ´ð°¸±ØÐëдÔÚ¸ÃÌâºóµÄºáÏßÉÏ»òÀ¨ºÅÖлòдÔÚ¸ÃÌâÏ·½¿Õ°×´¦£¬²»µÃдÔÚ ²Ý¸åÖ½ÖУ¬·ñÔò¸ÃÌâ´ð°¸ÎÞЧ.
Ò»¡¢ Ìî¿ÕÌ⣨±¾Ìâ18·Ö£¬Ã¿Ð¡Ìâ3·Ö£© 1.
AºÍBÊÇËæ»úʼþ£¬ÔòP(A)?0.5,P(A?B)?0.2,ÔòP(AB)?
0,7 .
2. ÉèÓÐ20¸öÁã¼þ£¬ÆäÖÐ16¸öÊÇÒ»µÈÆ·£¬4¸öÊǶþµÈÆ·£¬½ñ´ÓÖÐÈÎÈ¡3¸ö£¬ÔòÖÁÉÙÓÐÒ» ¸öÊÇÒ»µÈÆ·µÄ¸ÅÂÊÊÇ 284/285 .
3. Ëæ»ú±äÁ¿X~N(2,4),?(1)?0.8413,?(2)?0.9772,ÔòP{?2?X?6}?
0.9544 .
4. ÉèËæ»ú±äÁ¿X,YÏ໥¶ÀÁ¢£¬ÇÒX~N(1,5),Y~N(1,16)£¬Z?2X?Y?1Ôò
YÓëZµÄÏà¹ØÏµÊýΪ -2/3
5. Éè×ÜÌå·þ´ÓÕý̬·Ö²¼N(0,?)£¬X1,X2,?X9ÊÇÒ»Ñù±¾£¬ Ôò
27(X12?X2)·þ´Ó F(2,7) ·Ö²¼. 2222(X3?X4??X9)26. ÉèËæ»ú±äÁ¿X·þ´Ó¶þÏî·Ö²¼£¬¼´X~B(n,p),ÇÒEX?3,p?1/7,Ôòn? 21 .
¶þ¡¢Ñ¡ÔñÌ⣨±¾Ìâ10·Ö£¬Ã¿Ð¡Ìâ2·Ö£©
1. Éè×ÜÌåX£¬ÆäÖÐ×ÜÌå¾ùÖµ?δ֪£¬X1,X2,X3ÊÇ´Ó¸Ã×ÜÌåX³éÈ¡µÄÒ»¸öÑù±¾£¬
ÔÚÒÔÏÂËĸö?µÄÎÞÆ«¹À¼ÆÖУ¬×îÓÐЧµÄΪ D
1
¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ 2003¼¶
A
?1??131X1?X2?X35102B
?2??151X1?X2?X3 3124?3?C ?111111?4?X1?X2?X3 X1?X2?X3 D ?3623332. ÉèÀëÉ¢ÐÍËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ
X P 0 0.3 1 0.5 2 0.2 Æä·Ö²¼º¯ÊýΪF(x),ÔòF(3)= C .
A. 0 B. 0.3 C. 1 D. 0.8
3. ¼×ÒÒÁ½ÈËÏÂÆå£¬Ã¿¾Ö¼×ʤµÄ¸ÅÂÊΪ0.4£¬ÒÒʤµÄ¸ÅÂÊΪ0.6£¬¡£±ÈÈü¿É²ÉÓÃÈý¾ÖÁ½Ê¤ÖƺÍÎå¾ÖÈýÊ¤ÖÆ£¬Ôò²ÉÓà B ʱ,ÒÒ»ñʤµÄ¿ÉÄÜÐÔ¸ü´ó£¿ A. Èý¾ÖÁ½Ê¤ÖÆ B. Îå¾ÖÈýÊ¤ÖÆ
C. Îå¾ÖÈýÊ¤ÖÆºÍÈý¾ÖÁ½Ê¤Öƶ¼Ò»Ñù D. ÎÞ·¨ÅжÏ
4£®X1,X2,?XnÊÇÀ´×Ô×ÜÌåXµÄÒ»¸öÑù±¾£¬X~N(0,?)£¬Ôò?µÄ×î´óËÆÈ»¹À¼ÆÁ¿Îª A .
21n1n22X A. B. X?i?i4ni?1ni?1n1n12Xi D. Xi2 C. ??n?1i?14(n?1)i?1 5. ÈôËæ»ú±äÁ¿X,Y¾ù·þ´Ó±ê×¼Õý̬·Ö²¼£¬Ôò C ¡£
222A. X?Y·þ´ÓÕý̬·Ö²¼ B. X?Y·þ´Ó?·Ö²¼
X2C. X,Y¶¼·þ´Ó?·Ö²¼ D. 2·þ´ÓF·Ö²¼
Y222
2
¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ 2003¼¶
Èý¡¢ (±¾Ìâ10·Ö)É蹤³§AºÍ¹¤³§BµÄ²úÆ·µÄ´ÎÆ·ÂÊ·Ö±ðÊÇ1%ºÍ2% £¬ÏÖ´ÓÓÉAºÍBµÄ
²úÆ··Ö±ðÕ¼60%ºÍ40%µÄ²úÆ·ÖÐËæ»ú³éȡһ¼þ£¬ÎÊ £¨1£©³éµ½µÄÕâ¼þ²úƷΪ´ÎÆ·µÄ¸ÅÂÊÊǶàÉÙ£¿
£¨2£©Èç¹û³éµ½µÄ²úƷΪ´ÎÆ·£¬Ôò¸Ã´ÎÆ·ÊôÓÚ A³§Éú²úµÄ¸ÅÂÊΪ¶àÉÙ£¿ ½â£ºÉèB£º¡°ÈÎÒâ³éȡһ¼þ£¬³éµ½´ÎÆ·¡±¡£ A1£º¡°ÈÎȡһ¼þ²úÆ·£¬³éµ½µÄÊÇA³§Éú²úµÄ¡±
¡°ÈÎȡһ¼þ²úÆ·£¬³éµ½µÄÊÇB³§Éú²úµÄ¡±???????????2·Ö A2£º
P(A1)?0.6,P(A2)?0.4,P(B|A1)?0.01,P(B|A2)?0.02 2·Ö
P(B)??P(Ai)P(B|Ai)?0.6?0.01?0.4?0.02?0.014i?12P(A1)P(B|A1)P(A1|B)??0.006/0.014?3/7P(B)
ËÄ¡¢£¨±¾Ìâ
15 ·Ö£©ÉèËæ»ú±äÁ¿
???? 6·Ö
(X,Y)µÄ¸ÅÂÊÃܶÈΪ
?ce?(x?y), 0?x?1,y?0 f(x,y)?? ÆäËü?0, (1). ÊÔÈ·¶¨³£Êýc
(2) Çó±ßÔµ¸ÅÂÊÃܶÈfX(x),fY(y) £¨3£©X,YÊÇ·ñ¶ÀÁ¢£¿ÎªÊ²Ã´£¿ £¨4£©ÇóZ?max{X,Y}µÄ·Ö²¼º¯Êý¡£
????????½â£º £¨1£©ÓÉ
??????f(x,y)dxdy?1 ¼´
??????(x?y)?bedxdy?1 µÃb?e 3·Ö e?1???e?(x?y)?e?x???edy, 0?x?1,e, 0?x?1 £¨2£©fX(x)??e?1ÔòfX(x)??e?1
0??0, ÆäËü?0, ÆäËü??1e?(x?y)?e?y, y?0??edx, y?0, fY(y)??e?1¼´£ºfY(y)??
0 ÆäËü?0, ?0, ÆäËü?
3
¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ 2003¼¶
£¨3£©?f(x,y)?fX(x)fY(y)£¬ËùÒÔX,YÏ໥¶ÀÁ¢¡£
£¨4£©Z=max{X,Y}µÄ·Ö²¼º¯ÊýΪFZ(z)?P{Z?z}?P{X?z,Y?z} =P{X?z}P{Y?z}?FX(z)FY(z)
x?0?0, x?0?0, x??e?e?xedx, 0?x?1ÕûÀíµÃ£º FX(x)???FX(x)??(1?e?x), 0?x?1
?0e?1?e?1 x?1? x?1?1, ?1, y?0?0, y?0?0, ?y FY(y)?? ÕûÀíµÃ£º F(y)??y?Y?yedy, y?0?1?e, y?0???0 z?0?0, ?e¹Ê£ºFZ(z)??(1?e?z)2, 0?z?1
?e?1?z z?1?1?e, Îå¡¢(±¾Ìâ 12·Ö)ÉèËæ»ú±äÁ¿X¾ßÓÐÒÔÏ·ֲ¼ÂÉ£º
X pk 2 -2 0.1 -1 0.2 0 0.2 1 0.1 2 0.4 ÊÔÇ󣺣¨1£©Y?X?1 µÄ·Ö²¼Âɼ°P{0?Y?4} £¨2£©E(Y),D(Y)
½â£º(1) Y?X?1µÄ¿ÉÄÜȡֵΪ-1£¬0£¬3¡£
2P(Y??1)?P(X?0)?0.2 P(Y?0)?P(X?1)?P(X??1)?0.2?0.1?0.3
P(Y?3)?P(X?2)?P(X??2)?0.4?0.1?0.5 ËùÒÔ
Y P -1 0.2 0 0.3 3 0.5 P(0?X?4)?0.3?0.5?0.8
4