西安交通大学材料科学与工程学院材料科学基础复习题
4. Α-Fe为体心立方点阵,致密度虽然较小,但是它的间隙数目多且分散,因而间隙半径
很小:r四=0.291,R=0.0361nm;r八=0.154,R=0.0191nm。
H,N,C,B等元素熔人。α-Fe中形成间隙固熔体,由于尺寸因素相差很大,所以固熔度(摩尔分数)都很小。例如N在α-Fe中的固熔度(摩尔分数)在590℃时达到最大值,约为WN=0.1/l0-2,在室温时降至WN=0.001/l0-2;C在α-Fe中的固溶度(摩尔分数)在727℃时达最大值,仅为WC=0.02l8/10-2,在室温时降至WC=0.006/10-2。所以,可以认为碳原子在室温几乎不熔于α-Fe中,微量碳原子仅偏聚在位错等晶体缺陷附近。假若碳原子熔入。α-Fe中时,它的位置多在α-Fe的八面体间隙中心,因为。α-Fe中的八面体间隙是不对称的,形为扁八面体,[100]方向上间隙半径r=0.154R,而在[110]方向上,r=0.633R,当碳原子熔入时只引起一个方向上的点阵畸变。硼原子较大,熔人间隙更为困难,有时部分硼原子以置换方式熔人。氢在α-Fe中的固熔度(摩尔分数)也很小,且随温度下降时迅速降低。
以上元素在γ-Fe。中的固熔度(摩尔分数)较大一些。这是因为γ-Fe具有面心立方点阵,原子堆积致密,间隙数目少,故间隙半径较大:rA=0.414,R=0.0522nm;r四=0.225,R=0.0284 nm。故上述原子熔入时均处在八面体间隙的中心。如碳在γ-Fe中最大固熔度(质量分数)为WC=2.1l/10-2;氮在γ-Fe中的最大固熔度(质量分数)约为WN=2.8/10-2。
5. 密度ρ=5.97 g/cm3。
6. 两离子的中心距离为0.234 nm。
7. 碳原子占据10.2%的八面体间隙位置;氮原子占据12.5%的八面体间隙位置。
8. 这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量
升高。熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。
第 13 页 共 68 页
西安交通大学材料科学与工程学院材料科学基础复习题
9. 9 (1)0.278 nm;(2)0.393 nm(3)0.482 nm;(4)0.622 nm;(5)0.393 nm。
10. (1)WLi+=16/10-2,WMg2+=24/1020,WF-=44/10-2,WO2—=16/10-2
(2)该固熔体的密度ρ=2.9 g/cm3。
0.4E0.4E~4之间,即4900~7000 MPa 11. 故理论强度介于6
12. 模子的尺寸l=15.0 mm。
62.110.327.6::?5.2:10.2:1.7?3:6:112.0111.0079715.994
13.
C:H:O?
故可能是丙酮。
14. 画出丁醇(C4H9OH)的4种可能的异构体如下:
第 14 页 共 68 页
西安交通大学材料科学与工程学院材料科学基础复习题
15. (1)单体质量为12X2+1X2+35.5X2=97 g/mol;(2)聚合度为 n=60000/97=620。
16. (1)均方根据长度4.65 nm;(2)分子质量m=7125 g。
17. 理论上的最大应变为3380%。
18. 单体的摩尔分数为:X苯烯=20/10-2,X丁二烯=40/10-2,X丙烯晴=40/10-2
19. (1)和(2)如下:
(3)每摩尔的水(0.6X1024)形成时,需要消去0.6X1024的C—O及N—H键,同时形成0.6X1024的C—N及H—O键。 净能量变化为-15 kJ/mol。
第 15 页 共 68 页
西安交通大学材料科学与工程学院材料科学基础复习题
20. 硅酸盐结构的基本特点:
(1)硅酸盐的基本结构单元是[Si04]四面体,硅原子位于氧原子四面体的间隙中。硅—氧之间的结合键不仅是纯离子键,还有相当的共价键成分。 (2)每一个氧最多只能被两个[Si04]四面体所共有。
(3)[Si04]四面体可以是互相孤立地在结构中存在,也可以通过共顶点互相连接。 (4)Si—O--Si的结合键形成一折线。
硅酸盐分成下列几类: (1)含有有限硅氧团的硅酸盐; (2)链状硅酸盐; (3)层状硅酸盐; (4)骨架状硅酸盐。
21. 因为大多数陶瓷主要由晶相和玻璃相组成,这两种相的热膨胀系数相差较大,由高
温很快冷却时,每种相的收缩不同,所造成的内应力足以使陶瓷器件开裂或破碎。
22. 陶瓷材料中主要的结合键是离子键及共价键。由于离子键及共价键很强,故陶瓷的
抗压强度很高,硬度极高。因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动,故陶瓷材料的熔点很高,抗氧化性好,耐高温,化学稳定性高。
凝固
1. 试述结晶相变的热力学条件、动力学条件、能量及结构条件。
2. 如果纯镍凝固时的最大过冷度与其熔点(tm=1453℃)的比值为0.18,试求其凝固驱动
力。(ΔH=-18075J/mol)
第 16 页 共 68 页