优质文档
∵直线于圆有两个不同交点C,D,
m212?n?1(n?0), )∴CD?4(1?2,又24m?n2故CD?4(1?24)22,
3m?4由0?d?1,得m?0,又m?2,∴0?m?2. ∴0?1?43m2?42?3, 4因此CD?(0,3],CD?(0,3], 即CD的取值范围为(0,3]. ②当m?0,n?1时,直线l的方程为y?1;当m?2,n?0时,直线l的方程为x?221,2根据椭圆对称性,猜想E'的方程为4x?y?1. m2?n2?1, 下证:直线mx?ny?1(n?0)与4x?y?1相切,其中42222即m?4n?4,
?4x2?y2?1?2222由?1?mx消去y得:(m?4n)x?2mx?1?n?0, ?y?n?22即4x?2mx?1?n?0,
∴??4m?16(1?n)?4(m?4n?4)?0恒成立,
2222优质文档
优质文档
从而直线mx?ny?1与椭圆E':4x?y?1恒相切.
22若点M(m,n)是曲线?:Ax?By?1(A?B?0)上的动点,则直线l:mx?ny?1与定22x2y2??1(A?B?0)恒相切. 曲线?':AB21.解:(1)f'(x)?(x?a)e?e?ax?a(a?1),
xx∴f'(0)?(a?1),又f(0)??a,
2∴切线方程为:y?a?(a?1)(x?0),
2令y?0得x?a?2, 2(a?1)2∴2a?5a?2?0,
∴a?2或a?1. 2xxx(2)f'(x)?(x?a)e?e?ax?a(a?1)=[x?(a?1)](e?a),
x当a?0时,e?a?0,
x?(??,a?1),f'(0)?0,f(x)为减函数, x?(a?1,??),f'(x)?0,f(x)为增函数;
当a?0时,令f'(x)?0,得x1?a?1,x2?lna, 令g(a)?a?1?lna,
则g'(a)?1?优质文档
1a?1?, aa优质文档
当a?(0,1)时,g'(a)?0,g(a)为减函数,
当a?(1,??)时,g'(a)?0,g(a)为增函数,
∴g(a)ming(1)?0,
∴a?1?lna(当且仅当a?1时取“=”),
∴当0?a?1或a?1时,
x?(??,lna),f'(x)?0,f(x)为增函数,
x?(lna,a?1),f'(x)?0,f(x)为减函数,
x?(a?1,??),f'(x)?0,f(x)为减函数,
a?1时,f'(x)?x(ex?1)?0,f(x)在(??,??)上为增函数.
综上所述:a?0时,f(x)在(??,a?1)上为减函数,在(a?1,??)上为增函数,0?a?1或a?1时,f(x)在(lna,a?1)上为减函数,在(??,lna)和(a?1,??)上为增函数;a?1时,f(x)在(??,??)上为增函数.
x?x?0??x?ax0?a22.解:(1)设P(x,y),M(x0,y0),由OP?aOM得?,∴? ?y?ay0?y?y0?a??x?2?2cos???x?2a?2acos??aCM∵在1上,∴?即?(?为参数),
yy?2asin????2sin???a消去参数?得(x?2a)?y?4a(a?1),
优质文档
222优质文档
∴曲线C2是以(2a,0)为圆心,以2a为半径的圆.
(2)法1:A点的直角坐标为(1,3),∴直线OA的普通方程为y?3x,即3x?y?0,
设B点坐标为(2a?2acos?,2asin?),则B点到直线3x?y?0的距离d?a23cos??2sin??232?a2cos(??)?3,
6?∴当????6时,dmax?(3?2)a,
∴S?AOB的最大值为1?2?(3?2)a?4?23,∴a?2. 2222法2:将x??cos?,y??sin?代入(x?2a)?y?4a并整理得:??4acos?, 令???得??4acos?,∴B(4acos?,?),
S?AOB?∴1??OA?OB?sin?AOB?4acos?sin(??)?a2sin?cos??23cos2?23?asin2??3cos2??3?a2sin(2??)?33?,
∴当????12时,S?AOB取得最大值(2?3)a,依题意(2?3)a?4?23,∴a?2. 23.解:(1)∵f(x)?x?1?x?m?m?1,
∴只需要m?1?2,
∴m?1?2或m?1??2,
∴m的取值范围为是m?1或m??3. 优质文档