2019-2020学年浙江省衢州市q21教学联盟九年级(上)期中数学试卷(解析版)

20.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.

请结合图中信息,解决下列问题: (1)求此次调查中接受调查的人数. (2)求此次调查中结果为非常满意的人数.

(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.

21.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0). (1)求此抛物线的解析式; (2)求此抛物线顶点坐标及对称轴;

(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.

22.如图,校园空地上有一面墙,长度为4米.为了创建“美丽校园”,学校决定借用这面墙和20米的围栏围成一个矩形花园ABCD.设AD长为x米,矩形花园ABCD的面积为s平方米.

(1)如图1,若所围成的矩形花园AD边的长不得超出这面墙,求s关于x的函数关系式,并写出自变量x的取值范围;

(2)在(1)的条件下,当AD为何值时,矩形花园ABCD的面积最大,最大值是多少? (3)如图2,若围成的矩形花园ABCD的AD边的长可超出这面墙,求围成的矩形ABCD的最大面积.

23.如图1,抛物线y=ax2 x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E

(1)求该抛物线所对应的函数关系式; (2)求线段DE的长;

(3)在BC下方的抛物线上有一点P,P点的横坐标是m,△PBC的面积为S,求出S与m之间的函数关系式,并求出当m为何值时,S有最大值,最大值为多少?

24.已知抛物线y=a(x﹣1)(x﹣3)(a<0)的顶点为A,交y轴交于点C,过C作CB∥x轴交抛物线于点B,过点B作直线l⊥x轴,连结OA并延长,交l于点D,连结OB. (1)当a=﹣2时,求线段OB的长.

(2)是否存在特定的a值,使得△OBD为等腰三角形?若存在,请写出a值的计算过程;若不存在,请说明理由.

(3)设△OBD的外心M的坐标为(m,n),求m与n的数量关系式.

2019-2020学年浙江省衢州市Q21教学联盟九年级(上)期中数

学试卷

参考答案与试题解析

一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数是y关于x的二次函数的是( ) A.y=﹣x

B.y=2x+3

C.y=x2﹣3

D.y

【解答】解:A、y=﹣x不是二次函数,故此选项错误; B、y=2x+3不是二次函数,故此选项错误; C、y=x2﹣3是二次函数,故此选项正确; D、y

不是二次函数,故此选项错误; 故选:C.

2.下列说法正确的是( ) A.抛一枚硬币,正面一定朝上 B.掷一颗骰子,点数一定不大于6

C.为了解一种灯泡的使用寿命,宜采用普查的方法

D.“明天的降水概率为80%”,表示明天会有80%的地方下雨

【解答】解:A、抛一枚硬币,正面一定朝上的概率是50%,是随机事件,故A错误; B、掷一颗骰子,点数一定不大于6是必然事件,故B正确;

C、为了解一种灯泡的使用寿命,应采用抽样调查的方法,故C错误; D、“明天的降水概率为80%”,表示明天下雨的机会是80%,故D错误. 故选:B.

3.已知线段a=4,b=8,则线段a,b的比例中项为( ) A.±32

B.32

C. D.

【解答】解:设线段a、b的比例中项为x, 则x2=ab, 即x2=4×8,

解得x=4 或x=﹣4 <0(舍去), 故选:D.

联系客服:779662525#qq.com(#替换为@)