1.对顶角、邻补角。
①两条直线相交、构成哪两种特殊位置关系的角?指出图(1) 中具有这两种位置的角.
Aca13CCOBDBO24AD
b
(1) (2) (3) ②如图(2)中,若∠AOD=90°,那么直线AB,CD的位置关系如何? ③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角? 2.垂线及其性质.
①如图(4),直线AB、CD、EF相交于点O,CD⊥EF,∠1=35°,求∠2的度数.
CF12AADABCED
Bl
BC
(4) (5) (6)
②如图(5),AB⊥L,BC⊥L,B为重足,那么A、B、C三点在同一条直线上吗?为什么?
③如图(6),四边形ABCD,AD∥BC,AB∥CD,过A作AE⊥BC,过A作AF⊥CD,垂足分别是E、F,量出点A到BC的距离和AB、CD平行线间的距离.
④请归纳一下与垂直有关的知识中,有哪些重要结论? 3.同位角、内错角、同旁内角.
如图(7),找出∠1、∠2、∠3中哪两个是同位角、内错角、同旁内角? 4.平行线判定与性质
学生练习:①填空:如图(8),当_______时,a∥c, 理由是________;当______时,b∥c,理由是_________;当a∥b, b∥c时,______∥______,理由是_________.
d12abADADB'34c
(8) (9) (10) ②如图(9),AB∥CD,∠A=∠C,试判断AD与BC的位置关系?为什么? 5.关于平移,让学生思考:
(1)图形平移时,连接对应点有什么关系?
(2)如何确定图形平移的方向和平移的距离?
练习:如图(10),平移四边形ABCD,使点B移动到点B′,画出平移后的四边形A′B′C′D′.
BCBC25
【展示提升】
1.如图所示,直线L1∥L2,AB⊥L1,垂足为点O,BC与L2相交于点E,若∠1=43°,则∠2=____
2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2=_____ 3.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为_______ 4.如图,已知∠1=∠2,∠DAB=∠CBA,且DE⊥AC,BF⊥AC,
问:(1)AD∥BC吗?(2)AB∥CD吗?为什么? D C
1 E A F 2 B
5.如图,在四边形BFCD中,点E、A两点在FC上,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与
B D FB的位置关系,并说明为什么? 3 5 1 2 第五章 相交线与平行线练习 4 F E A 6 C 一、填空题
1.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.
2.如图(11),MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF 过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是________到________的距离, 线段MN的长度是________到________的距离,又是_______的距离,点N到直线MG 的距离是___.
BMACEGHNFDADEOF
BC
(11) (12)
3.如图(12),AD∥BC,EF∥BC,BD平分∠ABC,图中与∠ADO相等的角有_______ 个,分别是___________. 4.因为AB∥CD,EF∥AB,根据_________,所以_____________. 5.命题“等角的补角相等”的题设__________,结论是__________. 6.如图(13),给出下列论断:①AD∥BC:②AB∥CD;③∠A=∠C.
以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.
26
ADADOEF1MaB2BNblCCc
(13) (14) (15) 7.如图(14),直线AB、CD、EF相交于同一点O,而且∠BOC=
21∠AOC,∠DOF=∠AOD,那么∠FOC=______33度.
8.如图(15),直线a、b被C所截,a⊥L于M,b⊥L于N,∠1=66°,则∠2=________. 三、选择题.
1.下列语句错误的是( )
A.连接两点的线段的长度叫做两点间的距离 B.两条直线平行,同旁内角互补 C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角 D.平移变换中,各组对应点连成两线段平行且相等 DA18272.如图(16),如果AB∥CD,那么图中相等的内错角是( ) A.∠1与∠5,∠2与∠6; B.∠3与∠7,∠4与∠8;
63C.∠5与∠1,∠4与∠8; D.∠2与∠6,∠7与∠3 54BC(16)
3.下列语句:①三条直线只有两个交点,则其中两条直线互相平行; ②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直; ③过一点有且只有一条直线与已知直线平行,其中( ) A.①、②是正确的命题 B.②、③是正确命题 C.①、③是正确命题 D.以上结论皆错
4.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行; ②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内, 一条直线不可能与两条相交直线都垂直,其中说法错误个数有( )
A.3个 B.2个 C.1个 D.0个 四、解答题 C1.如图(17),是一条河,C河边AB外一点:
(1)过点C要修一条与河平行的绿化带,请作出正确的示意图. AB (2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)
2.如图(18),ABA⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.
(1)判断CD与AB的位置关系;
(2)BE与DE平行吗?为什么?
FCEAMDBN
3、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
求证:AD∥BE。
27
证明:∵AB∥CD(已知)
∴∠4=∠ ( ) ∵∠3=∠4(已知)
∴∠3=∠ ( ) ∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( ) 即∠ =∠ ∴∠3=∠ ( ) ∴AD∥BE( )
4.在方格纸上,利用平移画出长方形ABCD的立体图,其的对应点.(要求在立体图中,看不到的线条用虚线表
A 2 1 3 C
D F 4
E
B D'AD中点D′是D示)
BC6.1.1有序数对
[导学目标]
1. 理解有序数对的应用意义,了解平面上确定点的常用方法 2. 培养学生用数学的意识,激发学生的学习兴趣.
[导学重点与难点]
重点:有序数对及平面内确定点的方法. 难点:利用有序数对表示平面内的点. 学习方法:
先读书,再独立完成导学案中的要求,对学习中遇到的不理解的地方或有独到见解的地方和同学交流讨论。也可以和老师讨论。
学习过程
一、仔细阅读39页第一段和第二段内容并观察教材第39页的插图,说说“7排9号”和“9排7号”的位置有什么区别?
二、中期考试后我们班要开家长会,家长的座位如果安排到你的座位上,你如何让你的家长找到你的座位。(假如教室的座位按以前的摆放)
三、教材第39页图6. 1-1中的(1,5),(2,4),(4,2),(5,6),(3,3),(6,2).的同学你能找到吗?(请在书上标出来)
四、40页思考中的问题你能解决吗,
解决完思考中的问题后,请回答什么叫“有序数对”,“有序”是什么意思?“数对”呢? 五、请举出生活中利用有序数对的例子。 六、布置作业
28