第四讲 和差问题
教学目标:
1:学会运用画图线的方法表示倍关系中两个量,以更方便的找到解题的思路。 2:更熟练掌握解答差倍问题的方法,理解差倍问题中各个量之间的关系。 教学重点:更加熟练的运用画图线方法,更准确分析各量之间的关系。 教学难点:能够更好的理解差倍应用题中各倍数和差倍数的量的关系。 教学过程:
和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。 为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。 例1: 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克? 分析与解答: 我们可以这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).
解法1:①第二筐重多少千克?
(150-8)÷2=71(千克) ②第一筐重多少千克? 71+8=79(千克) 或 150-71=79(千克)
解法2:①第一筐重多少千克?
(150+8)÷2=79(千克) ②第二筐重多少千克? 79-8=71(千克)
或150-79=71(千克)
答:第一筐重79千克,第二筐重71千克。
1-1学校有排球、篮球共62个,排球比篮球多12个,排球、篮球各是多少个?
1-2甲、乙两人的年龄和是35岁,甲比乙小5岁,甲、乙各多少岁?
例2:今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
分析与解答: 题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。 解:①爸爸的年龄: [58+(35-7)]÷2
第 1 页,共 47 页
=[58+28]÷2 =86÷2 =43(岁) ②小强的年龄: 58-43=15(岁)
答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
2-1今年小刚和小强两人年龄和为22岁,一年前,小刚比小强大四岁,今年小刚和小强各是多少岁?
例3 : 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?
分析与解答: 解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们.可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩.
解:①语文和数学成绩之和是多少分?
94×2=188(分) ②数学得多少分?
(188+8)÷ 2=196÷2=98(分) ③ 语文得多少分?
(188-8)÷2=180÷2=90(分) 或 98-8=90(分)
答:小明期末考试语文得90分,数学得98分.
3-1小敏与妈妈今年的平均年龄为20岁,三年后,妈妈比小敏大28岁,今年妈妈和小敏各是多少岁?
第 2 页,共 47 页
4-1:甲乙两个工程队共有236人,从甲工程队调14人到乙工程队,则两队的工人数正好相等,甲、乙工程队原有人数各是多少?
4-2甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等,甲、乙两人各有多少元钱?
例5:小丽、小马和小磊三人共有课外书55本。小丽比小马多4本,小马又比小磊多6本,三人各有多少本?
5-1三块布共长220米,第二块布长是第一块的3倍,第三块布长是第二块布长的2倍,三块布各长多少米?
5-2甲、乙、丙三名工人一共生产零件420个,甲比乙多生产10个,乙比丙少生产17个,甲、乙、丙三人各生产零件多少个?
例6: 在每两个数字之间填上适当的加或减符号使算式成立。
1 2 3 4 5 6 7 8 9=5
分析与解答: 这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字相加再减去一部分字后差是5,也就是说1到9的和是45,而两部分的差是5,先要求出这两部分数字利用和差问题的方法便可以求出。 (45-5)÷ 2=20,20+5=25
可求出其中几个数的和是25,而另外几个数的和是20.在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。 例如:5+6+9=20可得到。
1+2+3+4-5-6+7+8-9=5
第 3 页,共 47 页
又如:5+7+8=20可得到。
1+2+3+4-5+6-7-8+9=5 又如:3+4+6+7=20可得到。
1+2-3-4+5-6-7+8+9=5
同学们,这道题你还有其他解法吗?试试看!
练习:
1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?
4.某工厂去年与今年的平均产值为96万元, 今年比去年多10万元,今年与去年的产值各是多少万元?
和差问题
和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。 为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。 例:“把姐姐的铅笔拿出3支后,姐姐、弟弟的铅笔支数就同样多.”这说明姐姐的铅笔比弟弟多3支,也说明姐姐和弟弟铅笔相差3支。
再例:“把姐姐的铅笔给弟弟3支后,两人铅笔支数就同样多.”如果认为姐姐的铅笔比弟弟多3支(差是3),那就错了.实际上姐姐比弟弟多2个3支.姐姐给弟弟3支后,自己留下3支,再加上他们原有的铅笔数,他们的铅笔支数才可能一样多.这里3×2=6支,就是暗差。
“把姐姐的铅笔给弟弟3支后还比弟弟多1支”,这就说明姐姐的铅笔支数比弟弟多3×2+1=7(支)。
例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?
分析 这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).
解法1:①第二筐重多少千克?
(150-8)÷2=71(千克)
②第一筐重多少千克?
71+8=79(千克)
或 150-71=79(千克)
解法2:①第一筐重多少千克?
(150+8)÷2=79(千克)
②第二筐重多少千克?
79-8=71(千克)
第 4 页,共 47 页