X=¡Æi=14Xi,
E(X)=¡Æi=14E(Xi)=4¡Á72=14, D(X)=¡Æi=14D(Xi)=4¡Á3512=353,
ÓÚÊÇ
P{10 ϰÌâ2 ÉèËæ»ú±äÁ¿XÓëYµÄÊýѧÆÚÍû·Ö±ðΪ-2ºÍ2,·½²î·Ö±ðΪ1ºÍ4£¬¶øÏà¹ØÏµÊýΪ-0.5, ¸ù¾ÝÇбÈÑ©·ò²»µÈʽ¹À¼ÆP{¨OX+Y¨O¡Ý6}. ½â´ð£º E(X)=-2, E(Y)=2, D(X)=1, D(Y)=4, ¦ÑX,Y=-0.5, ¡à E(X+Y)=E(X)+E(Y)=0, D(X+Y)=D(X)+D(Y)+2¦ÑX,YD(X)D(Y)=1+4+2¡Á(-0,5)¡Á1¡Á2=3, ¡à P{¨OX+Y¨O¡Ý6}¡Ü362=112. ϰÌâ3 ÉèX1,X2,?,XnÎªËæ»ú±äÁ¿ÐòÁУ¬aΪ³£Êý£¬Ôò{Xn}ÒÀ¸ÅÂÊÊÕÁ²ÓÚaÊÇÖ¸ . ½â´ð£º Ó¦Ì??>0,limn¡ú¡ÞP(¨OXn-a¨O¡Ý?)=0. ÓÉÒÀ¸ÅÂÊÊÕÁ²¶¨Òå¼´¿ÉµÃµ½½á¹û. ϰÌâ4 Éè×ÜÌåX·þ´Ó²ÎÊýΪ2µÄÖ¸Êý·Ö²¼£¬X1,X2,?,XnΪÀ´×Ô×ÜÌåXµÄÒ»¸öÑù±¾£¬Ôòµ±n¡ú¡Þ, Yn=1n¡Æi=1nXi2ÒÀ¸ÅÂÊÊÕÁ²ÓÚ . ½â´ð£º Ó¦Ì1/2. ÓÉÌâÉ裬¿ÉÖªXi¡«e(2), Òò´Ë E(Xi2)=D(Xi)+E(Xi2)=1¦Ë2+1¦Ë2=2¦Ë2=12. ¸ù¾ÝÇбÈÑ©·ò´óÊý¶¨ÂɵÄÍÆ¹ã£ºÈôX1,X2,?¾ßÓÐÏàͬµÄÊýѧÆÚÍûE(Xi)=¦Ì, Ôò¶ÔÓÚÈÎÒâµÄÕýÊý?, ÓÐ limx¡ú¡ÞP(¨O1n¡Æi=1nXi-¦Ì¨O)=1. Òò´Ë£¬±¾ÌâÓÐlimx¡ú¡ÞP(¨O1n¡Æi=1nXi2-12¨O)=1. ¼´µ±n¡ú¡Þʱ£¬ÒÀ¸ÅÂÊÊÕÁ²ÓÚ12. ϰÌâ5 ´Óij³§²úÆ·ÖÐÈÎÈ¡200¼þ£¬¼ì²é½á¹û·¢ÏÖÆäÖÐÓÐ4¼þ·ÏÆ·£¬ÎÒÃÇÄÜ·ñÏàПòúÆ·µÄ·ÏÆ·Âʲ»³¬¹ý0.005? ½â´ð£º Èô¸Ã¹¤³§µÄ·ÏÆ·Âʲ»´óÓÚ0.005, Ôò¼ì²é200¼þ²úÆ·Öз¢ÏÖ4¼þ·ÏÆ·µÄ¸ÅÂÊÓ¦¸Ã²»´óÓÚ p=C2004¡Á0.0054¡Á0.995196, Óò´Ëɶ¨Àí×÷½üËÆ¼ÆËã ¦Ë=200¡Á0.005=1, ¼´p¡Ö14e-14!¡Ö0.0153. ÕâÒ»¸ÅÂʺÜС£¬¸ù¾Ýʵ¼ÊÍÆ¶ÏÔÀí£¬ÕâһС¸ÅÂÊʼþʵ¼ÊÉϲ»Ì«»á·¢Éú£¬¹Ê²»ÄÜÏàПù¤³§µÄ·ÏÆ·Âʲ»³¬¹ý0.005. ϰÌâ6 ÓÐÒ»Åú½¨Öþ·¿ÎÝÓõÄľÖù£¬ÆäÖÐ80%µÄ³¤¶È²»Ð¡ÓÚ3m.ÏÖ´ÓÕâÅúľÖùÖÐËæ»úµØÈ¡³ö100¸ù£¬ÎÊÆäÖÐÖÁÉÙÓÐ30¸ù¶ÌÓÚ3mµÄ¸ÅÂÊÊǶàÉÙ£¿ ½â´ð£º °Ñ³éÒ»¸ùľÖù²âÆä³¤¶ÈÊÇ·ñ¶ÌÓÚ3m¿´×öÒ»´ÎÊÔÑé. ÉèʼþAΪ¡°³éµ½µÄľÖù³¤¶È¶ÌÓÚ3m¡±£¬ÔòÓÉÒÑÖªÌõ¼þÖª P(A)=20100=0.2=p. ÓÉÓÚľÖùÊýÁ¿ºÜ´ó£¬¿É°Ñ100´Î³éÈ¡¿´×öÊÇ100ÖØ²®Å¬ÀûÊÔÑé.¼Ç³é³öµÄ100¸ùľÖùÖжÌÓÚ 3mµÄľÖùÊýΪX, ÔòX¡«b(100,0.2). ÓÉÌâÒâºÍé¦Äª·ð¡ªÀÆÕÀ˹¶¨Àí£¬ÓÐ P{X¡Ý30}=1-P{X<30} =1-P{X-100¡Á0.2100¡Á0.2¡Á0.98<30-100¡Á0.2100¡Á0.2¡Á0.98 ¡Ö1-¦µ(2.5)=0.0062. ϰÌâ7 Ò»²¿¼þ°üÀ¨10²¿·Ö£¬Ã¿²¿·ÖµÄ³¤¶ÈÊÇÒ»¸öËæ»ú±äÁ¿£¬ËüÃÇÏ໥¶ÀÁ¢£¬·þ´Óͬһ·Ö²¼£¬ÆäÊýѧÆÚÍûΪ2mm, ¾ù·½²îΪ0.05mm, ¹æ¶¨×ܳ¤¶ÈΪ(20¡À0.1)mmʱ²úÆ·ºÏ¸ñ£¬ÊÔÇó²úÆ·ºÏ¸ñµÄ¸ÅÂÊ. ½â´ð£º Éè¸÷²¿·Ö³¤¶ÈΪXi(i=1,2,?,10), ×ܳ¤¶È Z=¡Æi=110Xi. ÒÑÖªE(Xi)=2,D(Xi)=(0.05)2, ÔòÒÀÌâÒâ¿ÉÖª£¬²¢ÓÃÁֵ²®¸ñ¡ªÀÕά¼«ÏÞ¶¨ÀíµÃ²úÆ·ºÏ¸ñµÄ¸ÅÂÊΪ P{20-0.1¡ÜZ¡Ü20+0.1} =P{-0.10.0510¡ÜZ-2¡Á100.0510¡Ü0.10.0510¡Ö¦µ(0.63)-¦µ(-0.63) =2¦µ(0.63)-1=2¡Á0.7357-1=0.4714. ϰÌâ8 ¾ÝÒÔÍù¾Ñ飬ijÖÖµçÆ÷Ôª¼þµÄÊÙÃü·þ´Ó¾ùֵΪ100СʱµÄÖ¸Êý·Ö²¼. ÏÖËæ»úµØÈ¡16Ö»£¬ÉèËüÃǵÄÊÙÃüÊÇÏ໥¶ÀÁ¢µÄ£¬ÇóÕâ16Ö»Ôª¼þµÄÊÙÃüµÄ×ܺʹóÓÚ1920СʱµÄ¸ÅÂÊ. ½â´ð£º ÉèXi±íʾµÚiÖ»µçÆ÷Ôª¼þµÄÊÙÃü£¬i=1,2,?,16. Xi(i=1,2,?,16)¼ä¶ÀÁ¢Í¬Ö¸Êý·Ö²¼£¬ E(Xi)=100Сʱ£¬D(Xi)=100Сʱ£¬n=16, ËùÇó¸ÅÂÊΪ P{¡Æi=116Xi>1920=P{¡Æi=116Xi-16¡Á100400>1920-1600400 ¡Ö1-¦µ(320400)=1-¦µ(0.8)=1-0.7881=0.2119. ϰÌâ9 ¼ìÑéÔ±Öð¸öµØ¼ì²éijÖÖ²úÆ·£¬Ã¿´Î»¨10ÃëÖÓ¼ì²éÒ»¸ö£¬µ«Ò²¿ÉÄÜÓеIJúÆ·ÐèÒªÖØ¸´¼ì²éÒ»´ÎÔÙÓÃÈ¥10ÃëÖÓ£¬¼Ù¶¨Ã¿¸ö²úÆ·ÐèÒªÖØ¸´¼ì²éµÄ¸ÅÂÊΪ12,ÇóÔÚ8СʱÄÚ¼ìÑéÔ±¼ì²éµÄ²úÆ·¶àÓÚ1900¸öµÄ¸ÅÂÊÊǶàÉÙ£¿ ·ÖÎö£º ½â´ð£º »»ÑÔÖ®£¬¼´Çó¼ì²é1900¸ö²úÆ·Ëù»¨µÄʱ¼ä²»³¬¹ý8СʱµÄ¸ÅÂÊ. ÉèXiΪ¼ì²éµÚi¸ö²úÆ·ËùÐèµÄʱ¼ä£¬ÔòX1,X2,?,X1900Ϊ¶ÀÁ¢Í¬·Ö²¼µÄËæ»ú±äÁ¿£¬S=¡Æi=11900XiΪ¼ì²é1900¸ö²úÆ·ËùÐèµÄ×Üʱ¼ä. ÓÉÌâÉ裬ÓÐ Xi={10,µÚi¸ö²úƷûÓÐÖØ¸´¼ìÑé20,µÚi¸ö²úÆ·ÖØ¸´¼ìÑé, ÇÒP{Xi=10}=P{Xi=20}=12,i=1,2,?, ÓÚÊÇ ¦Ì=E(Xi)=10¡Á12+20¡Á12=15, E(Xi2)=102¡Á12+202¡Á12=250(i=1,2,?), ¦Ò2=D(Xi)=E(Xi2)-[E(Xi)]2=25. ÓɶÀÁ¢Í¬·Ö²¼ÖÐÐļ«ÏÞ¶¨Àí£¬ÓÐ S¡«½üËÆN(1900¡Á15,1900¡Á25)=N(28500,47500), ¹ÊËùÇóÖ®¸ÅÂÊΪ P{S¡Ü8¡Á3600}=½üËÆP{S¡Ü28800}¡Ö¦µ(28800-2850047500) =¦µ(3005019)=¦µ(619)=0.9162. ϰÌâ10 ij³µ¼äÓÐͬÐͺŻú´²200²¿£¬Ã¿²¿¿ª¶¯µÄ¸ÅÂÊΪ0.7, ¼Ù¶¨¸÷»ú´²¿ª¹ØÊǶÀÁ¢µÄ£¬¿ª¶¯Ê±Ã¿²¿ÒªÏûºÄµçÄÜ15¸öµ¥Î»£¬Îʵ糧×îÉÙÒª¹©Ó¦Õâ¸ö³µ¼ä¶àÉÙµçÄÜ£¬²ÅÄÜÒÔ95%µÄ¸ÅÂʱ£Ö¤²»ÖÂÓÚÒò¹©µç²»×ã¶øÓ°ÏìÉú²ú. ½â´ð£º ¼Ç200²¿»ú´²Öпª¶¯µÄ»ú´²²¿ÊýΪX, Ôò X¡«b(200,0.7), ÓÉÖÐÐļ«ÏÞ¶¨Àí£¬ P{X¡Ük}¡Ö¦µ(k-200¡Á0.7200¡Á0.7¡Á0.3)¡Ý0.95, ²é±íµÃk-14042=1.65, ½âµÃk¡Ö151, ËùÐèµçÁ¿151¡Á15=2265¸öµ¥Î». ϰÌâ11 ijµçÊÓ»ú³§Ã¿ÔÂÉú²úÒ»Íǫ̀µçÊÓ»ú£¬µ«ËüµÄÏÔÏñ¹Ü³µ¼äµÄÕýÆ·ÂÊΪ0.8,ΪÁËÒÔ0.997µÄ¸ÅÂʱ£Ö¤³ö³§µÄµçÊÓ»ú¶¼×°ÉÏÕýÆ·µÄÏÔÏñ¹Ü£¬Îʸóµ¼äÿÔÂÉú²ú¶àÉÙÖ»ÏÔÏñ¹Ü£¿ ½â´ð£º ÉèÿÔÂÉú²únÖ»ÏÔÏñ¹Ü£¬ÕânÖ»ÏÔÏñ¹ÜÖÐÕýÆ·µÄÖ»ÊýΪX, ÔòX¡«b(n,0.8). ±¾Ìâ¼´ÇóÂú×ã P{X¡Ý10000}¡Ý0.997µÄ×îСµÄn. ÓÉé¦Äª·ð¡ªÀÆÕÀ˹¶¨Àí£¬ÓÐ X¡«½üËÆN(0.8n,0.8¡Á0.2n)=N(0.8n,0.16n), ÓÚÊÇ P{X¡Ý10000}=1-P{0¡ÜX<10000} ¡Ö[¦µ(10000-0.8n0.16n)-¦µ(0-0.8n0.16n)] ¡Ö1-¦µ(10000-0.8n0.4n)¡Ý0.997, ¼´¦µ(0.8n-100000.4n)¡Ý0.997. ²é±í¿ÉµÃ0.8n-100000.4n¡Ý2.75, ½âÖ®µÃn¡Ý12654.68, ËùÒÔÈ¡n=12655¼´¿ÉÂú×ãÒªÇó. ϰÌâ12 (1)Ò»¸´ÔÓµÄϵͳÓÉ100¸öÏ໥¶ÀÁ¢Æð×÷ÓõIJ¿¼þËù×é³É. ÔÚÕû¸öÔËÐÐÆÚ¼äÿ¸ö²¿¼þË𻵵ĸÅÂÊΪ0.10,ΪÁËʹÕû¸öϵͳÆð×÷Ó㬱ØÐëÖÁÉÙÓÐ85¸ö²¿¼þÕý³£¹¤×÷£¬ÇóÕû¸öϵͳÆð×÷ÓõĸÅÂÊ. (2)Ò»¸´ÔÓµÄϵͳÓÉn¸öÏ໥¶ÀÁ¢Æð×÷ÓõIJ¿¼þËù×é³É£¬Ã¿¸ö²¿¼þµÄ¿É¿¿ÐÔΪ0.90, ÇÒ±ØÐëÖÁÉÙÓÐ80%µÄ²¿¼þ¹¤×÷²ÅÄÜʹÕû¸öϵͳ¹¤×÷£¬ÎÊnÖÁÉÙΪ¶à´ó²ÅÄÜʹϵͳµÄ¿É¿¿ÐÔ²»µÍÓÚ0.95? ½â´ð£º (1)ÉèXi={1,µÚi¸ö²¿¼þÔÚÕû¸öÔËÐÐÆÚ¼äÕý³£¹¤×÷0,µÚi¸ö²¿¼þÔÚÔËÐÐÆÚ¼äËð»µ, (i=1,2,?,100). ÓÉÒÑÖªÌõ¼þ£¬X1,?,X100Ï໥¶ÀÁ¢ÇÒͬ·Ö²¼£¬ P{Xi=1}=0.9=p,P{Xi=0}=0.1=q. ¼ÇX=¡Æi=1100Xi, Ëü±íʾÔÚÕû¸öÔËÐÐÆÚ¼ä¹¤×÷×ŵIJ¿¼þÊý£¬¿ÉÖª£¬X¡«b(10,0.9). ÒÀÌâÒ⣬ËùÇó¸ÅÂÊΪ P{X>85}=1-P{X¡Ü85} =1-P{X-100¡Á0.9100¡Á0.9¡Á0.1¡Ü85-100¡Á0.9100¡Á0.9¡Á0.1 ¡Ö1-¦µ(-53)=¦µ(53)=0.9525, ¼´Õû¸öϵͳÆð×÷ÓõĸÅÂÊΪ0.9525. (2)Óë(1)ÖеļÙÉèÏàͬ£¬Ö»ÊÇÕâÀïX¡«b(n,0.9). ÒÀÌ⣬ҪP{X¡Ý0.8n}=0.95, ¼´ P{X-0.9nn¡Á0.9¡Á0.1¡Ý0.8n-0.9nn¡Á0.9¡Á0.1=0.95, Ò༴P{X-0.9nn¡Á0.9¡Á0.1¡Ý-n3=0.95, ½üËÆµØÓЦµ(n3)=0.95. ²é±íµÃn3=1.645, ½âµÃn=24.35, ÓÚÊÇ£¬ÒªÇón=25, ¼´ÖÁÉÙÓÐ25¸ö²¿¼þ²ÅÄÜʹϵͳ¿É¿¿ÐÔ²»µÍÓÚ0.95. ϰÌâ13