生物化学上册答案

分别为0.65nm和0.70nm。大多数β折叠股和β折叠片都有右手扭曲的倾向,以缓解侧链之间的空间应力(steric strain)。蚕丝心蛋白几乎完全由扭曲的反平行β折叠片构成。胶原蛋白是动物结缔组织中最丰富的结构蛋白,有若干原胶原分子组成。原胶原是一种右手超螺旋结构,称三股螺旋。弹性蛋白是结缔组织中另一主要的结构蛋白质。

蛋白质按其外形和溶解度可分为纤维状蛋白质、球状蛋白质和膜蛋白。α-角蛋白、丝心蛋白(β-角蛋白)、教员蛋白和弹性蛋白是不溶性纤维状蛋白质;肌球蛋白和原肌球蛋白是可溶性纤维状蛋白质,是肌纤维中最丰富的蛋白质。球状蛋白质是一类可溶性的功能蛋白,如酶、抗体、转运蛋白、蛋白质激素等,膜蛋白是一类与膜结构和功能紧密相关的蛋白质,它们又可分为膜内在蛋白质、脂锚定蛋白质以及膜周边蛋白质。 蛋白质结构一般被分为4个组织层次(折叠层次),一级、二级、三级和四级结构。细分时可在二、三级和四级结构。细分时可在二、三级之间增加超二级结构和结构域两个层次。超二级结构是指在一级序列上相邻的二级结构在三维折叠中彼此靠近并相互作用形成的组合体。超二级结构有3中基本形式:αα(螺旋束)、βαβ(如Rossman折叠)、ββ(β曲折和希腊钥匙拓扑结构)。结构域是在二级结构和超二级结构的基础上形成并相对独立的三级结构局部折叠区。结构域常常也就是功能域。结构域的基本类型有:全平行α螺旋结构域、平行或混合型β折叠片结构域、反平行β折叠片结构域和富含金属或二硫键结构域等4类。 球状蛋白质可根据它们的结构分为全α-结构蛋白质、α、β-结构蛋白质、全β-结构蛋白质和富含金属或二硫键蛋白质等。球状蛋白质有些是单亚基的,称单体蛋白质,有些是多亚基的,称寡聚或多聚蛋白质。亚基一般是一条多胎链。亚基(包括单体蛋白质)的总三维结构称三级结构。球状蛋白质种类很多,结构也很复杂,各有自己独特的三维结构。但球状蛋白质分子仍有某些共同的结构特征:①一种分子可含多种二级结构元件,②具有明显的折叠层次,③紧密折叠成球状或椭球状结构,④疏水测链埋藏在分子内部,亲水基团暴露在分子表面,⑤分子表面往往有一个空穴(活性部位)。 蛋白质受到某些物理或化学因素作用时,引起生物活性丢失,溶解度降低以及其他的物理化学常数的改变,这种现象称为蛋白质变性。变性实质是非共价键破裂,天然构象解体,但共价键未遭破裂。有些变性是可逆的。蛋白质变性和复性实验表明,一级结构规定它的三维结构。蛋白质的生物学功能是蛋白质天然构象所具有的性质。天然构象是在生理条件下热力学上最稳定的即自由能最低的三维结构。

蛋白质折叠不是通过随机搜索找到自由能最低构象的。折叠动力学研究表明,多肽链折叠过程中存在熔球态的中间体,并有异构酶和伴侣蛋白质等参加。

寡聚蛋白是由两个或多个亚基通过非共价相互作用缔合而成的聚集体。缔合形成聚集体的方式构成蛋白质的四级结构,它涉及亚级在聚集体中的空间排列(对称性)以及亚基之间的接触位点(结构互补)和作用力(非共价相互作用的类型)。 习题

1.(1)计算一个含有78个氨基酸的α螺旋的轴长。(2)此多肽的α螺旋完全伸展时多长?[11.7nm;28.08nm] 解:(1)α螺旋中每个残基绕轴旋转100°,沿轴上升0.15nm,故该α螺旋的轴长为: 78×0.15nm=11.7nm

(2) α螺旋每圈螺旋占3.6个氨基酸残基,故该α螺旋圈数为:78÷3.6圈;α螺旋的直径约为0.5nm,故每圈轴长为0.5πnm。完全伸展的α螺旋长度约为:0.5π×(78÷3.6)≌34.01nm。

2.某一蛋白质的多肽链除一些区段为α螺旋构想外,其他区段均为β折叠片构象。该蛋白质相对分子质量为240000,多肽链外姓的长度为5.06×10-5cm。试计算:α螺旋占该多肽链的百分数。(假设β折叠构象中每氨基酸残疾的长度为0.35nm)[59%]

解:一般来讲氨基酸的平均分子量为120Da,此蛋白质的分子量为240000Da,所以氨基酸残基数为240000÷120=2000个。设有X个氨基酸残基呈α螺旋结构,则: X?0.15+(2000-X)×0.35=5.06×10-5×107=506nm 解之得X=970,α螺旋的长度为970×0.15=145.5,故α-螺旋占该蛋白质分子的百分比为: 145.5/536×100%=29%

3.虽然在真空中氢键键能约为20kj/mol,但在折叠的蛋白质中它对蛋白质的桅顶焓贡献却要小得多(<5kj/mol)。试解释这种差别的原因。[在伸展的蛋白质中大多数氢键的共体和接纳体都与水形成氢键。折旧时氢键能量对稳定焓贡献小的原因。]

4.多聚甘氨酸是一个简单的多肽,能形成一个具有φ=-80°ψ=+120°的螺旋,根据拉氏构象图(图5-13),描述该螺旋的(a)手性;(b)每圈的碱基数。[(a)左手;(b)3.0]

解:据P206图5-13拉氏构象图, =φ-80°ψ=+120°时可知该螺旋为左手性,每圈残基数为3.0。

5.α螺旋的稳定性不仅取决于肽链间的氢键形成,而且还取决于肽链的氨基酸侧链的性质。试预测在室温下的溶液中下列多聚氨基酸那些种将形成α螺旋,那些种形成其他的有规则的结构,那些种不能形成有规则的结构?并说明理由。(1)多聚亮氨酸,pH=7.0;(2)多聚异亮氨酸,pH=7.0;(3)多聚精氨酸,pH=7.0;(4)多聚精氨酸,pH=13;(5)多聚谷氨酸,pH=1.5;(6)多聚苏氨酸,pH=7.0;(7)多聚脯氨酸,pH=7.0;[(1)(4)和(5)能形成α螺旋;(2)(3)和(6)不能形成有规则的结构;(7)有规则,但不是α螺旋]

6. 多聚甘氨酸的右手或左手α螺旋中哪一个比较稳定?为什么?[因为甘氨酸是在α-碳原子上呈对称的特殊氨基酸,因此可以预料多聚甘氨酸的左右手α螺旋(他们是对映体)在能量上是相当的,因而也是同等稳定的。]

7.考虑一个小的含101残基的蛋白质。该蛋白质将有200个可旋转的键。并假设对每个键φ和ψ有亮个定向。问:(a)这个蛋白质可能有多种随机构象(W)?(b)根据(a)的答案计算在当使1mol该蛋白质折叠成只有一种构想的结构时构想熵的变化(ΔS折叠);(c)如果蛋白质完全折叠成由H键作为稳定焓的唯一来源的α螺旋,并且每mol H键对焓的贡献为-5kj/mol,试计算ΔH折叠;(d)根据逆的(b)和(c)的答案,计算25℃时蛋白质的ΔG折叠。该蛋白质的折叠形式在25℃时是否稳定? [(a)W=2200=1.61×1060;(b)ΔS折叠=1.15 kj/(K?mol)(c)ΔH折叠100×(-5 kj/mol)=-500 kj/mol;注意,这里我们没有考虑在螺旋末端处某些氢键不能形成这一事实,但考虑与否差别很小。(d)ΔG折叠=-157.3 kj/mol.由于在25℃时ΔG折叠<0,因此折叠的蛋白质是稳定的。]

8.两个多肽链A和B,有着相似的三级结构。但是在正常情况下A是以单体相识存在的,而B是以四聚体(B4)形式存在的,问A和B的氨基酸组成可能有什么差别。[在亚基-亚基相互作用中疏水相互作用经常起主要作用,参与四聚体B4的亚基-亚基相互作用的表面可能比单体A的对应表面具有较多的疏水残基。]

9.下面的序列是一个球状蛋白质的一部分。利用表5-6中的数据和Chou-Faman的经验规则,预测此区域的二级结构。RRPVVLMAACLRPVVFITYGDGGTYYHWYH

[残基4-11是一个α螺旋,残基14-19和24-30是β折叠片。残基20-23很可能形成β转角]

10.从热力学考虑,完全暴露在水环境中和完全埋藏在蛋白质分子非极性内部的两种多肽片段,哪一种更容易形成α螺旋?为什么?[埋藏在蛋白质的非极性内部时更容易形成α螺旋。因为在水环境中多肽对稳定焓(ΔH折叠)的贡献要小些。]

11.一种酶相对分子质量为300000,在酸性环境中可解理成两个不同组分,其中一个组分的相对分子质量为100000,另一个为50000。大的组分占总蛋白质的三分之二,具有催化活性。用β-巯基乙醇(能还原二硫桥)处理时,大的失去催化能力,并且它的沉降速度减小,但沉降图案上只呈现一个峰(参见第7章)。关于该酶的结构作出什么结论?[此酶含4个亚基,两个无活性亚基的相对分子质量为50000,两个催化亚基的相对分子质量为100000,每个催化亚基是由两条无活性的多肽链(相对分子质量为50000)组成。彼此间由二硫键交联在一起。]

12.今有一种植物的毒素蛋白,直接用SDS凝胶电泳分析(见第7章)时,它的区带位于肌红蛋白(相对分子质量为16900)和β-乳球蛋白(相对分子质量37100)良种蛋白之间,当这个毒素蛋白用β-巯基乙醇和碘乙酸处理后,在SDS凝胶电泳中仍得到一条区带,但其位置靠近标记蛋白细胞素(相对分子质量为13370),进一步实验表明,该毒素蛋白与FDNB反应并酸水解后,释放出游离的DNP-Gly和DNP-Tyr。关于此蛋白的结构,你能做出什么结论?[该毒素蛋白由两条不同的多肽链通过链间二硫键交联而成,每条多肽链的相对分子质量各在13000左右。]

13.一种蛋白质是由相同亚基组成的四聚体。(a)对该分子说出来年各种可能的对称性。稳定缔合的是哪种类型的相互作用(同种或异种)?(b)假设四聚体,如血红蛋白,是由两个相同的单位(每个单位含α和β两种链)组成的。问它的最高对称性是什么?[(a)C4和D2,C4是通过异种相互作用缔合在一起,D2是通过同种相互作用缔合在一起,(b)C2因为每个αβ二聚体是一个不对称的原聚体]

14.证明一个多阶段装配过程比一个单阶段装配过程更容易控制蛋白质的质量。考虑一个多聚体酶复合物的合成,此复合物含6个相同的二聚体,每个二聚体由一个多肽A和一个B组成,多肽A和B的长度分别为300个和700个氨基酸残基。假设从氨基酸合成多肽链,多肽链组成二聚体,再从二聚体聚集成多聚体酶,在这一建造过程中每次操作的错误频率为10-8,假设氨基酸序列没有错误的话,多肽的折叠总是正确的,并假设在每一装配阶段剔除有缺陷的亚结构效率为100%,试比较在下列情况下有缺陷复合物的频率:(1)该复合物以一条6000个氨基酸连续的多肽链一步合成,链内含有6个多肽A和6个多肽B。(2)该复合物分3个阶段形成:第一阶段,多肽A和B的合成;第二阶段,AB二聚体的形成;第三阶段,6个AB二聚体装配成复合物。 [(1)有缺陷复合物的平均频率是6000×10-8=6×10-5]

[(2)由于有缺陷的二聚体可被剔除,因此有缺陷复合物的平均率只是最后阶段的操作次数(5此操作装配6个亚基)乘以错误频率,即:5×10-8。因此它比一步合成所产生的缺陷频率约低1000倍。]

第六章 蛋白质结构与功能的关系 提要

肌红蛋白(Mb)和血红蛋白(Hb)是脊椎动物中的载氧蛋白质。肌红蛋白便于氧在肌肉中转运,并作为氧的可逆性贮库。而血红蛋白是血液中的氧载体。这些蛋白质含有一个结合得很紧的血红素辅基。它是一个取代的卟啉,在其中央有一个铁原子。亚铁(Fe2+)态的血红素能结合氧,但高铁(+3)态的不能结合氧。红血素中的铁原子还能结合其他小分子如CO、NO等。

联系客服:779662525#qq.com(#替换为@)