《大学物理简明教程》课后习题答案(全)

放热

??Q2??Q2MCP(TC?TD)Mmol

根据绝热过程方程得到

??1??pAD绝热过程 ATApA?pBQ2TC?TDTC(1?TD/TC)??Q1TB?TATB(1?TA/TB)

??1???pDTD

??1??1??1??BC绝热过程 pBTB?pCTC

TDT?TCTB又

pC?pD

(2)不是卡诺循环,因为不是工作在两个恒定的热源之间. 4-12 (1)用一卡诺循环的致冷机从7℃的热源中提取1000 J的热量传向27℃的热源,需要多少功?从-173℃向27℃呢? (2)一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于作功就愈有利.当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利?为什么? 解:(1)卡诺循环的致冷机

7℃→27℃时,需作功

A1?T1?T2300?280Q2??1000?71.4T2280 J T1?T2300?100Q2??1000?2000T2100J

??1?T3T2e?Q2T2?A静T1?T2

?173℃→27℃时,需作功

A2?(2)从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的.

4-13 如题4-13图所示,1 mol双原子分子理想气体,从初态V1?20L,T1?300K经历三种不同的过程到达末态V2?40L,T2?300K. 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.

题4-13图

解:1?2熵变 等温过程 dQ?dAS2?S1??2

, dA?pdV

pV?RT

1dQ1V2RT1??dVTT1V1V

S2?S1?Rln1?2?3熵变

S2?S1??31V2?Rln2?5.76V! J?K?1

dQ2dQ?T?3T

CVdTTT?Cpln3?CVln2T1T3TTT1T3

V1V2?p?pT3 3 T11?3等压过程 1S2?S1??T3CpdT??T2

T3V2? T1V1

p3p2?T3?2等体过程 3T2 T2p2?T3p3T2p2?T 3p1

S2?S1?CPln

在1?2等温过程中 p1V1?p2V2 所以 1?4?2熵变

S2?S1??41V2p?CVln2V1p1

S2?S1?CPlnV2VVCVln2?Rln2?Rln2V1V1V1

dQ2dQ?T?4T

1?4绝热过程

S2?S1?0??T2CpdTTT4?CplnT2T?Cpln1T4T4

T1V4??1T1V1?T4V4?T4V1??1 Vppp1V1??p4V4?,4?(1)1/??(1)1/?V1p4p2

??1??1在1?2等温过程中 p1V1?p2V2

V4ppV?(1)1/??(1)1/??(2)1/?V1p4p2V1

T1V?(2)T4V1??1?

S2?S1?CPln4-14 有两个相同体积的容器,分别装有1 mol的水,初始温度分别为T1和T2,T1>T2,令其进行接触,最后达到相同温度T.求熵的变化,(设水的摩尔热容为Cmol). 解:两个容器中的总熵变

TCCmoldTdTS?S0????molT1T2TTTT1??1V2?CPln?Rln2T4?V1

TTT2?Cmol(ln?ln)?CmollnT1T2T1T2

因为是两个相同体积的容器,故

Cmol(T?T2)?Cmol(T1?T) 得

T?T2?T12

(T2?T1)2S?S0?Cmolln4T1T2

4-15 把0℃的0.5kg的冰块加热到它全部溶化成0℃的水,问:

(1)水的熵变如何?

(2)若热源是温度为20 ℃的庞大物体,那么热源的熵变化多大? (3)水和热源的总熵变多大?增加还是减少?(水的熔解热

?1??334J?g)

解:(1)水的熵变 (2)热源的熵变 (3)总熵变

Q0.5?334?103?S1???612T273 J?K?1

Q?0.5?334?103?S2????570T293 J?K?1

熵增加

?S??S1??S2?612?570?42 J?K?1

习题五

5-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示

(1) 以A处点电荷为研究对象,由力平衡知:q?为负电荷

1q212cos30??4π?0a24π?0q???qq?(32a)3

解得 (2)与三角形边长无关.

3q3

题5-1图 题5-2图 5-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2?,如题5-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示

Tcos??mg??q2?Tsin??F?1e?4π?0(2lsin?)2?

解得 q?2lsin?4??0mgtan?

5-3 在真空中有A,B两平行板,相对距离为d,板面积为S,其

联系客服:779662525#qq.com(#替换为@)