最新人教版八年级数学各章节期末复习学案(补课班专用)

八年级下册 同学当堂检测 我的个性化学案

八年级下册数学期末复习学案(01)

编制:中山中学杨连奖 姓名:________ 得分:_____

一、知识点梳理: 1、二次根式的定义.

一般地,式子a (a≥0)叫做二次根式,a叫做被开方数。两个非负数:(1)a≥0 ;(2)a ≥0

2、二次根式的性质:

(1).a?a?0?是一个________ 数 ; (2)

?_______?(3)a2?a??_______?_______??a?2?__________(a≥0)

?a?0??a?0??a?0?

3、二次根式的乘除:

积的算术平方根的性质:ab?a?b(a?0,b?0),二次根式乘法法则:a?b?__________(a≥0,b≥0)

商的算术平方根的性质:

a?bab(a?0,b?0).二次根式除法法则:

a?ba(a?0,b?0) b 1.被开方数不含分母; 4、最简二次根式 2.分母中不含根号;

3. 被开方数中不含能开得尽方的因数或因式. 分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的. 二、典型例题:

例1:当x是怎样实数时,下列各式在实数范围内有意义? ⑴ 小结:

代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0

page 1 of 78

x?2 ⑵

(x?1)2?x0 ⑶3?x?x?1 ⑷x2?1 (5)

x?2x?1

八年级下册 同学当堂检测 我的个性化学案

例2:化简:

3242(1)(2?2)2?|1?2| (2)(?)2?|?|

5353

例3: (1)已知y=3?x+2x?6+5,求

x的值. y (2) 已知y2?4y?4?x?y?1?0,求xy的值.

小结:(1)常见的非负数有:a2,a,a

(2)几个非负数之和等于 0,则这几个非负数都为0. 例4:化简:

(1)32; (2)2

例5:计算:

ab33; (3)0.48 (4)x2x25y (5) 2y9x312?53 (2) (1) 2?1a?13????a?0,b?0? 2ab?35?3 (3) ??2?2b?

例6:化去下列各式分母中的二次根式: (1)

page 2 of 78

3?231y31 (2)3 (3) (4)?x?0,y?0?

x85?2

八年级下册 同学当堂检测 我的个性化学案

三、强化训练: 1、使式子1?x有意义的x的取值范围是( ) 2?xA、x≤1; B、x≤1且x??2; C、x??2; D、x?1且x??2. 2、已知

>>灞曞紑鍏ㄦ枃<<
12@gma联系客服:779662525#qq.com(#替换为@)