算法设计与分析(第2版) 王红梅 胡明 习题答案

习题1

1.

图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler,1707—1783)提出并解决了该问题。七桥问题是这样描述的:北区 一个人是否能在一次步行中穿越哥尼斯堡(现

东区 在叫加里宁格勒,在波罗的海南岸)城中全部岛区 的七座桥后回到起点,且每座桥只经过一次,

南区 图1.7是这条河以及河上的两个岛和七座桥的

图1.7 七桥问题

草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点 1, 一次步行

2, 经过七座桥,且每次只经历过一次 3, 回到起点

该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法 1.r=m-n

2.循环直到r=0 2.1 m=n 2.2 n=r 2.3 r=m-n 3 输出m

3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C++描述。

//采用分治法

//对数组先进行快速排序 //在依次比较相邻的差 #include using namespace std;

int partions(int b[],int low,int high) {

int prvotkey=b[low]; b[0]=b[low]; while (low

while (low=prvotkey) --high;

b[low]=b[high];

while (low

b[high]=b[low]; }

b[low]=b[0]; return low; }

void qsort(int l[],int low,int high) {

int prvotloc; if(low

prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序 由low 到prvotloc-1 qsort(l,prvotloc+1,high); //递归调用排序 由 prvotloc+1到 high } }

void quicksort(int l[],int n) {

qsort(l,1,n); //第一个作为枢轴 ,从第一个排到第n个 }

int main() {

int a[11]={0,2,32,43,23,45,36,57,14,27,39}; int value=0;//将最小差的值赋值给value for (int b=1;b<11;b++) cout<

quicksort(a,11);

for(int i=0;i!=9;++i)

{

if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) ) value=a[i+1]-a[i]; else

value=a[i+2]-a[i+1]; }

cout<

return 0; }

4. 设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。要求分别给出伪代码和C++描述。

#include using namespace std;

int main() { int a[]={1,2,3,6,4,9,0};

int mid_value=0;//将“既不是最大也不是最小的元素”的值赋值给它 for(int i=0;i!=4;++i) { if(a[i+1]>a[i]&&a[i+1]a[i+2]) { mid_value=a[i+1]; cout<

5. 编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。

#include using namespace std;

int main() {

double value=0;

for(int n=1;n<=10000 ;++n) { value=value*10+1; if(value 13==0) { cout<<\至少为:\ break; } }//for

return 0; }

6. 计算π值的问题能精确求解吗?编写程序,求解满足给定精度要求的π值

#include using namespace std;

int main () {

double a,b;

double arctan(double x);//声明 a = 16.0*arctan(1/5.0); b = 4.0*arctan(1/239);

cout << \

return 0; }

double arctan(double x) {

int i=0;

double r=0,e,f,sqr;//定义四个变量初 sqr = x*x; e = x;

while (e/i>1e-15)//定义精度范围 {

f = e/i;//f是每次r需要叠加的方程

r = (i%4==1)?r+f:r-f;

e = e*sqr;//e每次乘于x的平方 i+=2;//i每次加2 }//while return r; }

7. 圣经上说:神6天创造天地万有,第7日安歇。为什么是6天呢?任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。例如,6=1+2+3,因此6是完美数。神6天创造世界,暗示着该创造是完美的。设计算法,判断给定的自然数是否是完美数

#include using namespace std;

int main() {

int value, k=1; cin>>value;

for (int i = 2;i!=value;++i) {

while (value % i == 0 ) {

k+=i;//k为该自然数所有因子之和 value = value/ i; }

}//for

if(k==value)

cout<<\该自然数是完美数\ else

cout<<\该自然数不是完美数\ return 0; }

8. 有4个人打算过桥,这个桥每次最多只能有两个人同时通过。他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。这就意味着两个人过桥后必须有一个人将手电筒带回来。每个人走路的速度是不同的:甲过桥要用1分钟,乙过桥要用2分钟,丙过桥要用5分钟,丁过桥要用10分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间?

由于甲过桥时间最短,那么每次传递手电的工作应有甲完成 甲每次分别带着乙丙丁过桥 例如:

第一趟:甲,乙过桥且甲回来 第二趟:甲,丙过桥且甲回来 第一趟:甲,丁过桥 一共用时19小时

9.欧几里德游戏:开始的时候,白板上有两个不相等的正整数,两个玩家交替行动,每次行动时,当前玩家都必须在白板上写出任意两个已经出现在板上的数字的差,而且这个数字必须是新的,也就是说,和白板上的任何一个已有的数字都不相同,当一方再也写不出新数字时,他就输了。请问,你是选择先行动还是后行动?为什么?

设最初两个数较大的为a, 较小的为b,两个数的最大公约数为factor。

则最终能出现的数包括: factor, factor*2, factor*3, ..., factor*(a/factor)=a. 一共a/factor个。

如果a/factor 是奇数,就选择先行动;否则就后行动。

习题2

1.如果T1(n)=O(f (n)),T2(n)=O(g(n)),解答下列问题: (1)证明加法定理:T1(n)+T2(n)=max{O(f (n)), O(g(n))}; (2)证明乘法定理:T1(n)×T2(n)=O(f (n))×O(g(n)); (3)举例说明在什么情况下应用加法定理和乘法定理。

,(1) (2)

(3)比如在 for(f(n)) {

for(g(n)) }

中应该用乘法定理

如果在“讲两个数组合并成一个数组时”,应当用加法定理

2.考虑下面的算法,回答下列问题:算法完成什么功能?算法的基本语句是什么?基本语句执行了多少次?算法的时间复杂性是多少?

(2)int Q(int n) (1)int Stery(int n)

{ {

if (n == 1) int S = 0;

for (int i = 1; i <= n; i++) return 1;

S = S + i * i; else return S; return Q(n-1) + 2 * n - 1;

} }

(1) 完成的是1-n的平方和

基本语句:s+=i*i,执行了n次

时间复杂度O(n)

(2) (2)完成的是n的平方

基本语句:return Q(n-1) + 2 * n – 1,执行了n次 时间复杂度O(n)

3. 分析以下程序段中基本语句的执行次数是多少,要求列出计算公式。 (1)for (i = 1; i <= n; i++) (2)m = 0; if (2*i <= n) for (i = 1; i <= n; i++) for (j = 2*i; j <= n; j++) for (j = 1; j <= 2*i; j++) m=m+1; y = y + i * j;

(1) 基本语句2*i

基本语句y = y + i * j执行了2/n次 一共执行次数=n/2+n/2=O(n)

(2) 基本语句m+=1执行了(n/2)*n=O(n*n) 4. 使用扩展递归技术求解下列递推关系式:

1n?1?4n?1 (2)(1)T(n)?? T(n)???2T(n3)?nn?1??3T(n?1)n?1

(1) int T(int n) { if(n==1) return 4;

else if(n>1) return 3*T(n-1); } (2)

int T(int n) {

if(n==1) return 1;

else if(n>1) return 2*T(n/3)+n; }

5. 求下列问题的平凡下界,并指出其下界是否紧密。 (1)求数组中的最大元素;

(2)判断邻接矩阵表示的无向图是不是完全图; (3)确定数组中的元素是否都是惟一的;

(4)生成一个具有n个元素集合的所有子集

(1) Ω(n) 紧密? (2) Ω(n*n) (3) Ω(logn+n)(先进行快排,然后进行比较查找) (4) Ω(2^n)

7.画出在三个数a, b, c中求中值问题的判定树。

a

a

b

8.国际象棋是很久以前由一个印度人Shashi发明的,当他把该发明献给国王时,国王很高兴,就许诺可以给这个发明人任何他想要的奖赏。Shashi要求以这种方式给他一些粮食:棋盘的第1个方格内只放1粒麦粒,第2格2粒,第3格4粒,第4格8粒,??,以此类推,直到64个方格全部放满。这个奖赏的最终结果会是什么样呢?

#include using namespace std;

int main() {

long double result=1; double j=1;

for(int i=1;i<=64;++i) { j=j*2; result+=j; j++; }

cout<

return 0; }

习题3

1. 假设在文本\中查找模式\,写出分别采用BF算法和KMP

算法的串匹配过

//BF算法

#include using namespace std;

int BF(char S[], char T[]) {

int index = 0; int i = 0, j = 0; while ((S[i] != '\\0') && (T[j] != '\\0')) {

if (S[i] == T[j]) { i++; j++; } else { ++index; i = index; j = 0; } }

if (T[j] == '\\0') return index + 1; else return 0; }

int main() { char s1[19]=\

char s2[7]=\

cout<< BF( s1, s2) <

//KMP算法

#include using namespace std;

void GetNext(char T[ ], int next[ ]) //求模式T的next值 {

int i, j, len; next[0] = -1;

for (j = 1; T[j]!='\\0'; j++) //依次求next[j] {

for (len = j - 1; len >= 1; len--) //相等子串的最大长度为j-1 { for (i = 0; i < len; i++) //依次比较T[0]~T[len-1]与T[j-len]~T[j-1] if (T[i] != T[j-len+i]) break; if (i == len) { next[j] = len; break; } }//for if (len < 1)

next[j] = 0; //其他情况,无相等子串 }//for }

int KMP(char S[ ], char T[ ]) //求T在S中的序号 {

int i = 0, j = 0;

int next[80]; //假定模式最长为80个字符 GetNext(T, next);

while (S[i] != '\\0' && T[j] != '\\0') {

if (S[i] == T[j]) {

i++; j++; }

else { j = next[j]; if (j == -1) {i++; j++;}

} }

if (T[j] == '\\0') return (i - strlen(T) +1); //返回本趟匹配的开始位置 else return 0; }

int main() { char s1[]=\ char s2[]=\

cout<

return 0; }

2.分式化简。设计算法,将一个给定的真分数化简为最简分数形式。例如,将6/8化简为3/4。

#include using namespace std;

int main() {

int n;//分子 int m;//分母

int factor;//最大公因子 int factor1;

cout<<\输入一个真分数的分子与分母: \ cin>>n>>m;

int r = m % n;//因为是真分数 所以分母一定大于分子 factor1=m; factor=n; while (r != 0) {

factor1 =factor; factor = r;

r = factor1% factor; }

cout<<\输出该真分数的最简分数: \return 0; }

3. 设计算法,判断一个大整数能否被11整除。可以通过以下方法:将该数的十进制表示

从右端开始,每两位一组构成一个整数,然后将这些数相加,判断其和能否被11整除。例如,将562843748分割成5,62,84,37,48,然后判断(5+62+84+37+48)能否被11整除 //将一个大整数看成一个数组

//数组的奇数位对应数的10倍加上数组偶数对应数的本身 //验证结果能否被11整除

#include using namespace std;

int main() { int a[9]={5,6,2,8,4,3,7,4,8}; int result=0; //result为题目要求的各位之和 for(int i=0;i!=9;++i) { if(i%2==0) result+=a[i]; //i 为偶数位时,结果加上其对应数组数的本身 else result+=a[i]*10; //i 为奇数位时,结果加上对应数组数的10倍 } if(result==0) cout<<\该整数能被11整除\ else

cout<<\该整数不能被11整除\ return 0; }

4. 数字游戏。把数字 1,2,?,9这9个数字填入以下含有加、减、乘、除的四则运算式中,使得该等式成立。要求9个数字均出现一次且仅出现一次,且数字1不能出现在乘和除的一位数中(即排除运算式中一位数为1的平凡情形)。

??×?+???÷?-?? = 0

5. 设计算法求解an mod m,其中a、n和m均为大于1的整数。(提示:为了避免an

超出int型的表示范围,应该每做一次乘法之后对n取模)

#include using namespace std;

int square(int x) {

return x*x; }

//用递归思想

int resultmod(int a, int n) {

if(n== 0) return 1; if(n%2 == 0) return square(resultmod(a, n/2));//n为偶数的时,取n的一半防止溢出 else return a*resultmod(a, n-1);//n为奇数时,取n-1; }

int main() {

int a, n, m;

cout<<\请输入a,n, m: \ cin>>a>>n>>m; cout<

int result = resultmod(a, n);

cout<<\的结果为:\ return 0; }

6. 设计算法,在数组r[n]中删除所有元素值为x的元素,要求时间复杂性为O(n),空间复杂性为O(1)。

7. 设计算法,在数组r[n]中删除重复的元素,要求移动元素的次数较少并使剩余元素间的相对次序保持不变。 #include using namespace std;

void deletere(int a[],int N) { int b[100]={0}; int i,k; k=0; static int j=0; for(i=0;i

int main() { int a[]={1,2,1,3,2,4}; deletere(a,6); return 0; }

//在数组查找相同的元素

//把其中一个相同的数值的元素位置设成一个“特殊数值” //输出所求函数

#include

using namespace std;

int main() {

int a[]={1,2,1,5,3,2,9,4,5,5,3,5}; int i,j;

for( i=0;i<12;i++) {

for(j=0;j

a[i]=64787250;//设一个数组不存在的数值 } }//for

for(i=0;i<12;i++) { if(a[i]!=64787250) cout<

8. 设表A={a1, a2, ?, an},将A拆成B和C两个表,使A中值大于等于0的元素存入表B,值小于0的元素存入表C,要求表B和C不另外设置存储空间而利用表A的空间。

//先对A进行快排

//将大于0的元素给B,小于0的元素给C

#include using namespace std;

int partions(int l[],int low,int high) {

int prvotkey=l[low]; l[0]=l[low];

while (low

while (low=prvotkey) --high;

l[low]=l[high];

while (low

l[high]=l[low]; }

l[low]=l[0]; return low; }

void qsort(int l[],int low,int high) {

int prvotloc; if(low

prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序 由low 到prvotloc-1 qsort(l,prvotloc+1,high); //递归调用排序 由 prvotloc+1到 high } }

void quicksort(int l[],int n) {

qsort(l,1,n); //第一个作为枢轴 ,从第一个排到第n个 }

int main() { int a[11]={-2,2,32,43,-23,45,36,-57,14,27,-39};

quicksort(a,11);

for(int i=1;i<11;i++) { if(a[i]<0)

cout<<\ else cout<<\ }

cout<

return 0;

}

9. 荷兰国旗问题。要求重新排列一个由字符R, W, B(R代表红色,W代表白色,B代表兰色,这都是荷兰国旗的颜色)构成的数组,使得所有的R都排在最前面,W排在其次,B排在最后。为荷兰国旗问题设计一个算法,其时间性能是O(n)。

//0代表红;1代表白;2代表蓝 #include using namespace std;

const int N = 20;

void swap_ab ( int *p , int *q ) {

int tmp = *p; *p = *q; *q = tmp; }

void process ( int a[], int n ) {

int *p, *q; p = q = a;

while ( p != a+n-1 ) //p向前遍历,直到便利完毕 {

if ( *(p+1) < *p ) {

q = p+1;

while ( *q < *(q-1) ) {

swap_ab ( q, q-1 ); --q; //q指针后移 } } //if ++p; } //while }

int main()

{

int a[N] = { 0, 2, 1, 2, 0, 1, 0, 2, 2, 1, 0, 1, 2, 1, 1, 0, 0, 1, 1, 2}; //待处理的数组

cout << \处理后的数组序列: \ process ( a, N );

for (int i=0; i< N; ++i ) cout << a[i] <<\

cout << endl; return 0; }

10. 设最近对问题以k维空间的形式出现,k维空间的两个点p1=(x1, x2, ?, xk)和p2=(y1, y2, ?, yk)的欧几里德距离定义为:d(p1,p2)??(y-x)iii?1k2。对k维空间的最近对问题设计

蛮力算法,并分析其时间性能。

11.设计蛮力算法求解小规模的线性规划问题。假设约束条件为:(1)x+y≤4;(2)x+3y≤6;(3)x≥0且y≥0;使目标函数3x+5y取得极大值。

#include using namespace std;

int main() {

int x,y,x0,y0;

int summax=0,temp=0; for(x0=0;x0<=4;++x0) {

for(y0=0;(x0+y0<=4)&&(x0+3*y0<=6);++y0)

temp=3*x0+5*y0; if(temp>=summax) { summax=temp; x=x0;//符合sum最大值的x y=y0;//符合sum最大值得y }

}//for

cout<<\

return 0; }

12.设计算法,判定一个以邻接矩阵表示的连通图是否具有欧拉回路。

算法描述:

输入:邻接矩阵(n*n)

输出:如有证明有欧拉回路,则输出该回路,否则,输出无解信息 1 对矩阵的对角线是否有>0的元素进行判断 1.1 循环变量i从1—n重复进行下述操作:

1.1.1计算矩阵i次方,如果矩阵对角线上有>0的元素,则跳转到1.2 1.1.2否则++i;

1.2 如果矩阵对角线有>0的元素,则输出该回路 2 输出无解信息;

13.找词游戏。要求游戏者从一张填满字符的正方形表中,找出包含在一个给定集合中的所有单词。这些词在正方形表中可以横着读、竖着读、或者斜着读。为这个游戏设计一个蛮力算法

14. 变位词。给定两个单词,判断这两个单词是否是变位词。如果两个单词的字母完全相同,只是位置有所不同,则这两个单词称为变位词。例如,eat和tea是变位词。

//判断qwer和rewq是否是变位词 #include #include using namespace std;

int main() {

char s[5]=\ char t[5]=\ for(int i=0;i!=4;++i) { if(s[i]!=t[3-i]) { cout<<\和rewq不是变位词\ return 0; break; } }

cout<<\和rewq是变位词\

return 0; }

15.在美国有一个连锁店叫7-11店,因为这个商店以前是早晨7点开门,晚上11点关门。有一天,一个顾客在这个店挑选了四样东西,然后到付款处去交钱。营业员拿起计算器,按了一些键,然后说:“总共是$7.11。”这个顾客开了个玩笑说:“哦?难道因为你们的店名叫7-11,所以我就要付$7.11吗?”营业员没有听出这是个玩笑,回答说:“当然不是,我已经把这四样东西的价格相乘才得出这个结果的!”顾客一听非常吃惊,“你怎么把他们相乘呢?你应该把他们相加才对!”营业员答道:“噢,对不起,我今天非常头疼,所以把键按错了。”然后,营业员将结果重算了一遍,将这四样东西的价格加在一起,然而,令他俩更为吃惊的是总和也是$7.11。设计蛮力算法找出这四样东西的价格各是多少?

该算法为:

int $7.11(float a[],float b[],float c[],float d[],int n) {

for(int i=0;i!=n;++i) for(int j=0;j!=n;++j) for(int k=0;k!=n;++k)

for(int m=0;m!=n;++m) {

if((a[i]+b[j]+c[k]+d[m])==7.11 && a [i]*b[j]*c[k]*d[m]==7.11) cout<

习题4

1. 分治法的时间性能与直接计算最小问题的时间、合并子问题解的时间以及子问题的个数有关,试说明这几个参数与分治法时间复杂性之间的关系。

2. 证明:如果分治法的合并可以在线性时间内完成,则当子问题的规模之和小于原问题的规模时,算法的时间复杂性可达到O(n)。

O(N)=2*O(N/2)+x

O(N)+x=2*O(N/2)+2*x

a*O(N)+x=a*(2*O(N/2)+x)+x=2*a *O(N/2)+(a+1)*x 由此可知,时间复杂度可达到O(n);

3.分治策略一定导致递归吗?如果是,请解释原因。如果不是,给出一个不包含递归的分治例子,并阐述这种分治和包含递归的分治的主要不同。

不一定导致递归。

如非递归的二叉树中序遍历。

这种分治方法与递归的二叉树中序遍历主要区别是:应用了栈这个数据结构。

4. 对于待排序序列(5, 3, 1, 9),分别画出归并排序和快速排序的递归运行轨迹。

归并排序:

第一趟:(5,3)(1,9); 第二趟:(3,5,1,9); 第三趟:(1,3,5,9);

快速排序:

第一趟:5( ,3,1,9);//5为哨兵,比较9和5 第二趟:5(1,3, ,9);//比较1和5,将1挪到相应位置; 第三趟:5(1,3, ,9);//比较3和5; 第四趟:(1,3,5,9);

5. 设计分治算法求一个数组中的最大元素,并分析时间性能。

//简单的分治问题

//将数组均衡的分为“前”,“后”两部分

//分别求出这两部分最大值,然后再比较这两个最大值

#include using namespace std;

extern const int n=6;//声明 int main() { int a[n]={0,6,1,2,3,5};//初始化 int mid=n; int num_max1=0,num_max2=0; for(int i=0;i<=n;++i)//前半部分 { if(a[i]>num_max1) num_max1=a[i];

} for(int j=n+1;jnum_max2) num_max2=a[j]; } if(num_max1>=num_max2) cout<<\数组中的最大元素: \ else

cout<<\数组中的最大元素: \ return 0; }

时间复杂度:O(n)

6. 设计分治算法,实现将数组A[n]中所有元素循环左移k个位置, 要求时间复杂性为O(n),空间复杂性为O(1)。例如,对abcdefgh循环左移3位得到defghabc。

//采用分治法

//将数组分为0-k-1和k-n-1两块 //将这两块分别左移 //然后再合并左移

#include using namespace std;

void LeftReverse(char *a, int begin, int end) {

for(int i=0;i<(end-begin+1)/2;i++)//交换移动 {

int temp=a[begin+i]; a[begin+i]=a[end-i]; a[end-i]=temp; } }

void Converse(char *a,int n,int k) {

LeftReverse(a, 0, k+1); LeftReverse(a, k, n+1);

LeftReverse(a, 0, n-1); for(int i=0;i

int main() {

char a[7]={'a','b','c','d','e','f','g'}; Converse(a,7,3);

return 0; }

7. 设计递归算法生成n个元素的所有排列对象。

#include using namespace std;

int data[100];

//在m个数中输出n个排列数(n<=m) void DPpl(int num,int m,int n,int depth) {

if(depth==n) {

for(int i=0;i

for(int j=0;j

if((num&(1<

DPpl(num+(1<

int main() {

DPpl(0,5,1,0);

DPpl(0,5,2,0); DPpl(0,5,3,0); DPpl(0,5,4,0); DPpl(0,5,5,0);

return 0; }

8. 设计分治算法求解一维空间上n个点的最近对问题。

参见4.4.1最近对问题的算法分析及算法实现

9. 在有序序列(r1, r2, ?, rn)中,存在序号i(1≤i≤n),使得ri=i。请设计一个分治算法找到这个元素,要求算法在最坏情况下的时间性能为O(log2n)。

//在有序数组中

//采用二分法查找符合条件的元素

#include using namespace std;

void Findnum(int *a,int n) {

int low=0; int high=n-1;

while(low<=high) {

int mid=(low+high)/2; if(a[mid]==mid) { cout<<\这个数是: \ break; } else if(a[mid]>mid) high=mid-1; else low=mid+1; } }

int main() { int a[7]={1,0,2,5,6,7,9}; Findnum(a,7); return 0; }

时间复杂度为O(log2n)。

10. 在一个序列中出现次数最多的元素称为众数。请设计算法寻找众数并分析算法的时间复杂性。

//先对序列进行快速排序 //再进行一次遍历 //输出众数的重复次数

#include using namespace std;

int partions(int b[],int low,int high) {

int prvotkey=b[low]; b[0]=b[low]; while (low

while (low=prvotkey) --high;

b[low]=b[high];

while (low

b[high]=b[low]; }

b[low]=b[0]; return low; }

void qsort(int l[],int low,int high)

{

int prvotloc; if(low

{

prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序 由low 到prvotloc-1 qsort(l,prvotloc+1,high); //递归调用排序 由 prvotloc+1到 high

} }

void quicksort(int l[],int n) {

qsort(l,1,n); //第一个作为枢轴 ,从第一个排到第n个 }

int main() {

int a[10]={1,2,3,5,3,3,3,2,5,1}; int i=0;

int count=0;

int max=0;//max表示出现的次数

qsort(a,0,10); while(i<10) { int j; j=i+1; if(a[i]=a[j]&&i<10) { count++; i++; } if(count>max) { max=count; count=0; } }//while

cout<<\重复次数:\

return 0;

}

时间复杂度nlog(n)

11. 设M是一个n×n的整数矩阵,其中每一行(从左到右)和每一列(从上到下)的元素都按升序排列。设计分治算法确定一个给定的整数x是否在M中,并分析算法的时间复杂性。

12. 设S是n(n为偶数)个不等的正整数的集合,要求将集合S划分为子集S1和S2,使得| S1|=| S2|=n/2,且两个子集元素之和的差达到最大。

//先用快速排序进行一趟排序

//如果s1(大的数集)的的个数大于n/2 //将(i<=n/2-low-1)个最小的数排到后面 //如果s1(大的数集)的的个数小于n/2 //将s2(小的数集)n/2-low-1排到前面 //将排好的数组的前n/2个数赋值给s1 //将排好的数组的后n/2个数赋值给s2

#include using namespace std; const int n=8;

void partions(int a[],int low,int high) { //进行一趟快排 int prvotkey=a[low]; a[0]=a[low]; while (low

while (low

a[low]=a[high];

while (low=prvotkey) ++low;

a[high]=a[low]; }

a[low]=prvotkey;

//如果s1(大的数集)的的个数大于n/2 if(low>=n/2) {

for(int i=0;i<=n/2-low-1;++i) {

for(int j=0;j

{ if(a[j]

//如果s1(大的数集)的的个数小于n/2 else

for(int i=0;i<=n/2-low-1;++i) {

for(int k=n-1;ka[k-1]) { int temp1=a[k]; a[k]=a[k-1]; a[k-1]=temp1; } }//for } }

int main() { int a[n]={1,3,5,9,6,0,-11,-8}; partions(a,0,n-1); for(int i=0;i

if(i<4) {

cout<<\属于子集s1的:\ cout<

cout<<\属于子集s2的:\ cout<

} } return 0; }

13. 设a1, a2,?, an是集合{1, 2, ?, n}的一个排列,如果iaj,则序偶(ai, aj)称为该排列的一个逆序。例如,2, 3, 1有两个逆序:(3, 1)和(2, 1)。设计算法统计给定排列中含有逆序的个数。

//用归并进行排序

//当一个子集的一个数大于第二个子集的一个数,为逆序,即a[i]>a[j] //则逆序数为end-j+1;

#include using namespace std;

int count;

void Merge(int a[],int a1[],int begin,int mid,int end)//合并子序列 {

int i=begin,j=mid+1,k=end; while(i<=mid&&j<=end) {

if(a[i]<=a[j]) a1[k++]=a[i++];//取a[i]和a[j]中较小者放入r1[k] else { a1[k++]=a[j++]; count+=(end-j+1); } }

while(i<=mid) a1[k++]=a[i++]; while(j<=end) a1[k++]=a[j++]; }

void MergeSort(int a[ ], int begin, int end) {

int mid,a1[1000]; if(begin==end) return ; else

{ mid=(begin+end)/2; MergeSort(a,begin,mid); MergeSort(a,mid+1,end); Merge(a,a1,begin,mid,end); } }

int main() { int a[6]={6,5,4,3,2,1}; count=0; MergeSort(a,0,6); cout<

14. 循环赛日程安排问题。设有n=2k个选手要进行网球循环赛,要求设计一个满足以下要求的比赛日程表:

(1)每个选手必须与其他n-1个选手各赛一次; (2)每个选手一天只能赛一次。

采用分治方法。

将2^k选手分为2^k-1两组,采用递归方法,继续进行分组,直到只剩下2个选手时,然后进行比赛,回溯就可以指定比赛日程表了

15. 格雷码是一个长度为2n的序列,序列中无相同元素,且每个元素都是长度为n的二进制位串,相邻元素恰好只有1位不同。例如长度为23的格雷码为(000, 001, 011, 010, 110, 111, 101, 100)。设计分治算法对任意的n值构造相应的格雷码。

//构造格雷码

#include using namespace std;

int n;

char a[100]; void gelei(int k) {

if(k==n) {

cout<

}

gelei(k+1);

a[k]='0'?'1':'0'; //取反

gelei(k+1); }

int main() {

while(cin>>n && n != 0) { memset(a,'0',sizeof(a)); //初始化,全部置零

a[n] ='\\0'; gelei(0); cout<

return 0; }

16. 矩阵乘法。两个n×n的矩阵X和Y的乘积得到另外一个n×n的矩阵Z,且Zij 满足 (1≤i, j≤n),这个公式给出了运行时间为O(n3)的算法。可以用分 治法解决矩阵乘法问题,将矩阵X和Y都划分成四个n/2×n/2的子块,从而X和Y的乘积可以用这些子块进行表达,即

从而得到分治算法:先递归地计算8个规模为n/2的矩阵乘积AE、BG、AF、BH、CE、DG、CF、DH,然后再花费O(n2)的时间完成加法运算即可。请设计分治算法实现矩阵乘法,并分析时间性能。能否再改进这个分治算法?

习题5

1. 下面这个折半查找算法正确吗?如果正确,请给出算法的正确性证明,如果不正确,请

说明产生错误的原因。

int BinSearch(int r[ ], int n, int k) {

int low = 0, high = n - 1; int mid;

while (low <= high)

{

mid = (low + high) / 2; if (k < r[mid]) high = mid;

else if (k > r[mid]) low = mid;

else return mid; }

return 0;

}

错误。 正确算法:

int BinSearch1(int r[ ], int n, int k) {

int low = 0, high = n - 1; int mid;

while (low <= high) {

mid = (low + high) / 2; if (k < r[mid]) high = mid - 1;

else if (k > r[mid]) low = mid + 1;

else return mid; }

return 0; }

2. 请写出折半查找的递归算法,并分析时间性能。

//折半查找的递归实现

#include using namespace std;

int digui_search(int a[],int low,int high,int x) {

if (low > high) return 0;

int mid = (low+high)/2; if (a[mid] == x) return mid;

else if (a[mid] < x)

digui_search(a,low,mid-1,x); else

digui_search(a,mid+1,high,x); }

int main() { int a[6]={0,1,2,9,5,3}; int result=digui_search(a,0,5,5);

cout<

3. 修改折半查找算法使之能够进行范围查找。所谓范围查找是要找出在给定值a和b之间

的所有元素(a≤b)

修改第二题算法并实现:

//折半查找算法使之能够进行范围查找

#include using namespace std;

//折半进行范围查找函数:

void digui_search(int min, int max, int a[], int low, int high) {

int mid;

mid=(low+high)/2; if(a[mid]

digui_search(min, max, a, mid, high); else if(a[mid]>max)

digui_search(min, max, a, low, mid); else {

for(int i=mid; a[i]>=min && i>=low; i--) cout<

for(int j=mid+1; a[j]<=max && j<=high; j++) cout<

void main() {

int r[6], min, max;

cout<<\请输入数组元素:\ for(int i=0; i<6; i++) cin>>r[i];

cout<<\请输入查找范围最小值min和最大值max:\

cin>>min>>max;

digui_search(min, max, r, 0, 5); cout<

4. 求两个正整数m和n的最小公倍数。(提示:m和n的最小公倍数lcm(m, n)与m和n的最大公约数gcd(m, n)之间有如下关系:lcm(m, n)=m×n/gcd(m, n))

//求两个数的最小公倍数

#include using namespace std;

int main (void) {

int a,b; int i=1;

cin>>a>>b;

while((i%a!=0)||(i%b!=0)) ++i;

cout<<\最小公倍数为:\

return 0; }

(该算法比较直接,要使其改进,可用欧几里得算法求得两个数的最大公约数,然后套用上面的公式再求最小公倍数)

5. 插入法调整堆。已知(k1, k2, ?, kn)是堆,设计算法将(k1, k2, ?, kn, kn+1)调整为堆(假设调整为大根堆)。

参照:

void SiftHeap(int r[ ], int k, int n) {

int i, j, temp;

i = k; j = 2 * i + 1; //置i为要筛的结点,j为i的左孩子 while (j < n) //筛选还没有进行到叶子 {

}

if (j < n-1 && r[j] < r[j+1]) j++; //比较i的左右孩子,j为较大者

if (r[i] > r[j]) //根结点已经大于左右孩子中的较大者 break; else {

temp = r[i]; r[i] = r[j]; r[j] = temp; //将被筛结点与结点j交换

i = j; j = 2 * i + 1; //被筛结点位于原来结点j的位置 }

}

进行调堆!

6. 设计算法实现在大根堆中删除一个元素,要求算法的时间复杂性为O(log2n)。

//将要删除的a[k]与最后一个元素a[n-1]交换 //然后进行调堆

void de_SiftHeap(int r[ ], int k, int n) {

int i, j, temp,temp1; i = k; j = 2 * i + 1; if(i<0||i>n-1) return error; else if(i==n-1) free(a[i]);

else //置i为要筛的结点,j为i的左孩子

while (j < n) //筛选还没有进行到叶子 {

temp1=a[i]; //将a[n-1]与a[k]交换; a[i]=a[n-1]; a[n-1]= temp1;

if (j < n-1 && r[j] < r[j+1]) j++; //比较i的左右孩子,j为较大者 if (r[i] > r[j]) //根结点已经大于左右孩子中的较大者 break; else { temp = r[i]; r[i] = r[j]; r[j] = temp; //将被筛结点与结点j交换 i = j; j = 2 * i + 1; //被筛结点位于原来结点j的位置 } } }

7. 计算两个正整数n和m的乘积有一个很有名的算法

n m 称为俄式乘法,其思想是利用了一个规模是n的解和一个50 65 25 130 130 规模是n/2的解之间的关系:n×m=n/2×2m(当n是偶

12 260 数)或:n×m=(n-1)/2×2m+m(当n是奇数),并以16 520 3 1040 1040 1 2080 + 2080 3250 图5.15 俄式乘法

×m=m作为算法结束的条件。例如,图5.15给出了利用俄式乘法计算50×65的例子。据说十九世纪的俄国农夫使用该算法并因此得名,这个算法也使得乘法的硬件实现速度非常快,因为只使用移位就可以完成二进制数的折半和加倍。请设计算法实现俄式乘法。

//俄式乘法

#include using namespace std;

int fun(int m,int n) {

int sum=0; int temp=n; while(m!=1) {

if(m%2==0)//如果n是偶数 {

n=n*2;

m=m/2; }

else//如果n是奇数 {

n=n*2;

sum+=temp; m=(m-1)/2; }

temp=n;//记录倒数第二个n的值 }

return sum+n; }

int main() {

int a,b;

while(cin>>a>>b) {

cout<

8. 拿子游戏。考虑下面这个游戏:桌子上有一堆火柴,游戏开始时共有n根火柴,两个玩家轮流拿走1,2,3或4根火柴,拿走最后一根火柴的玩家为获胜方。请为先走的玩家设计一个制胜的策略(如果该策略存在)。

如果桌上有小于4根的火柴,先手必胜,如果是5根,先手必输;依次类推,同理15、20、25…….都是必输状态;所有每次把对手逼到15、20、25…….等必输状态,就可以获胜。

9. 竞赛树是一棵完全二叉树,它反映了一系列“淘汰赛”的结果:叶子代表参加比赛的n个选手,每个内部结点代表由该结点的孩子结点所代表的选手中的胜者,显然,树的根结点就代表了淘汰赛的冠军。请回答下列问题:

(1)这一系列的淘汰赛中比赛的总场数是多少?

(2)设计一个高效的算法,它能够利用比赛中产生的信息确定亚军。

(1)因为n人进行淘汰赛,要淘汰n-1人,所有要进行n-1场比赛。 (2)

10. 在120枚外观相同的硬币中,有一枚是假币,并且已知假币与真币的重量不同,但不知道假币与真币相比较轻还是较重。可以通过一架天平来任意比较两组硬币,最坏情况下,能不能只比较5次就检测出这枚假币?

将120枚平均分为三组,记为:A,B,C;先将A,B比较,如果A,B重量不同(假如B比A重),再将B与C比较,如果B,C相同,则A有假币;如果B,C不同,再将A,C比较,如果A,C相同,则B有假币;如果A,C不同,则B有假币;如果A,B相同,则C有假币;

习题6

1. 动态规划法为什么都需要填表?如何设计表格的结构?

在填写表格过程中,不仅可以使问题更加清晰,更重要的是可以确定问题的存储结构; 设计表格,以自底向上的方式计算各个子问题的解并填表。

2. 对于图6.26所示多段图,用动态规划法求从顶点0到顶点12的最短路径,写出求解过程。 1 6 3 8 1 7 3 3 3 5 6 5 10 4 4 5 5 8 2 0 12 3 5 3 8 3 11 3 7 9 8 2 6 6 6 4 图6.26 第2题图

将该多段图分为四段;

首先求解初始子问题,可直接获得: d(0, 1)=c01=5(0→1) d(0, 2)=c02=3(0→1)

再求解下一个阶段的子问题,有: d(0,3)= d(0, 1)+ c13 =6(1→3)

d(0,4)=min{d(0,1)+ c14 ,d(0,2)+ c24}=8(1→4) 。。。。。。。。(以此类推)

最短路径为:0→1→3→8→11→12 3.用动态规划法求如下0/1背包问题的最优解:有5个物品,其重量分别为(3, 2, 1, 4,5),价值分别为(25, 20, 15, 40, 50),背包容量为6。写出求解过程。

(x1, x2,x3,x4,x5) →(1,1,1,0,0)(过程略)

4. 用动态规划法求两个字符串A=\xzyzzyx\和B=\zxyyzxz\的最长公共子序列。写出求解过程。 略

5. 给定模式\和文本\,写出动态规划法求解K-近似匹配的过程。 略

6. 对于最优二叉查找树的动态规划算法,设计一个线性时间算法,从二维表R中生成最优二叉查找树。

7. Ackermann函数A(m, n)的递归定义如下:

n?1??A(m,n)??A(m?1,1)?A(m?1,A(m,n?1))?m?0m?0,n?0 m?0,n?0设计动态规划算法计算A(m, n),要求算法的空间复杂性为O(m)。

//求ackman函数 //使用栈

#include using namespace std;

long ackman(long m, long n) {

long stack[10000]; int pos=1;

stack[0]=m;stack[1]=n; while(pos)

{

n=stack[pos--]; m=stack[pos]; if(m==0)

stack[pos]=n+1; if(m!=0&&n==0) {

stack[pos++]=m-1; stack[pos]=1; }

if(m!=0&&n!=0) {

stack[pos++]=m-1; stack[pos++]=m; stack[pos]=n-1; } }

return stack[0]; }

int main(int argc, char *argv[]) {

long m,n; cin>>m>>n;

cout<

return 0; }

8. 考虑下面的货币兑付问题:在面值为(v1, v2, ?, vn)的n种货币中,需要支付y值的货币,应如何支付才能使货币支付的张数最少,即满足

?xvi?1nii?y,且使?xi最小(xi是

i?1n非负整数)。设计动态规划算法求解货币兑付问题,并分析时间性能和空间性能。

#include #define N 100000 #define M 20

int a[N][M]; int value[M];

using namespace std;

int main() {

while(true) {

int i,j,k; int x,y,z;

cout<<\输入货币种类的个数:\ cin>>x;

cout<<\从小到大输入货币的价值,其中第一个必须为一:\ for(i=1;i<=x;i++)//x为货币种类的个数 {

cout<<\ cin>>y; value[i]=y; }

cout<<\输入要兑换的钱的价值:\ cin>>z;//z为钱 for(j=0;j<=z;j++) a[j][0]=0;

for(k=0;k<=x;k++) a[0][k]=0; for(i=1;i<=z;i++) {

for(j=1;j<=x;j++) {

if(value[j]==i) a[i][j]=1; else if(value[j]>i) a[i][j]=a[i][j-1]; else

a[i][j]=a[i-value[j]][j]+1;//相当于把乘法换成加法,即碰到一个钱数于

兑换货币自身价值时,返回到

钱数减去该货币值的地方,其值再加1// }//for }

cout<<\兑换的最小货币个数是:\

}//while

return 0; }

9. 多边形游戏。多边形游戏是一个单人玩的游戏,开始时有一个由n个顶点构成的多边形,每个顶点具有一个整数值,每条边具有一个运算符“+”或“×”。游戏规则是每次选择一条边e以及和e相关联的两个顶点i和j,用一个新的顶点k取代边e、顶点i和j,顶点k的整数值是顶点i和j的整数值通过边e上的运算符计算得到的结果。当所有边都删除时,游戏结束,游戏的得分就是所剩顶点的整数值。设计动态规划算法,对于给定的多边形计算最高得分。

联系客服:779662525#qq.com(#替换为@)