分析 由于桌面所受的压力难以直接求出,因此,可转化为求其反作用力,即桌面给绳的托力.但是,应注意此托力除了支持已落在桌面上的绳外,还有对dt 时间内下落绳的冲力,此力必须运用动量定理来求.
解 取如图所示坐标,开始时绳的上端位于原点,Oy 轴的正向竖直向下.绳的总长为l,以t 时刻,已落到桌面上长为y、质量为m′的绳为研究对象.这段绳受重力P、桌面的托力FN 和下落绳子对它的冲力F (如图中所示)的作用.由力的平衡条件有
myg?F?FN?0 (1) lm为求冲力F,可取dt 时间内落至桌面的线元dy 为研究对象.线元的质量dm?dy,它
l受到重力dP 和冲力F 的反作用力F′的作用,由于F′>>dP,故由动量定理得
mvdy (2) l而 F??F? (3)
F?dt?0?由上述三式可得任意时刻桌面受到的压力大小为
mmm?FN??FN?yg?v2?3yg?3m?g
lll *3 -16 设在地球表面附近,一初质量为5.00 ×105 kg 的火箭,从尾部喷出气体的速率为2.00 ×103 m·s-1 .(1) 试问:每秒需喷出多少气体,才能使火箭最初向上的加速度大小为4.90 m·s-2 .(2) 若火箭的质量比为6.00,求该火箭的最后速率.
分析 这是一个系统内质量转移的问题.为了讨论火箭的运动规律,仍需建立其在重力场中的动力学方程.为此,以t 时刻质量为m 的火箭为研究对象,它在t→t +Δt 的时间内,将分离成火箭主体(包括尚剩的燃料)和排出的燃料两部分.根据它们的总动量的增量ΣdPi 和系统所受的外力———重力(阻力不计),由动量定理可得到-mg =udm′/dt +mdv/dt(推导从略,见教材),即火箭主体的动力学方程.由于在dt 时间内排出燃料的质量dm′很小,式中m 也就可以视为此刻火箭主体的质量, 而燃料的排出率dm′/dt 也就是火箭质量的变化率-dm/dt.这样,
上述方程也可写成udm?mg?ma.在特定加速度a0 的条件下, dt根据初始时刻火箭的质量m0 ,就可求出燃料的排出率dm/dt.在火箭的质量比( 即t 时刻火箭的质量m 与火箭的初始质量m0之比) 已知的条件下,可算出火箭所经历的时间,则火箭运动的速率可通过对其动力学方程积分后解得.
解 (1) 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为
udm?mg?ma (1) dt因火箭的初始质量为m0 =5.00 ×105 kg, 要使火箭获得最初的加速度 a0 =4.90 m·s-2,则燃气的排出率为
dmm0?g?a0???3.68?103kg?s?1
dtuudmdv?mg?m dtdtm(2) 为求火箭的最后速率,可将式(1)改写成
分离变量后积分,有
dmt?v0dv?u?m0m??0gdt
v火箭速率随时间的变化规律为
v?v0?uln因火箭的质量比为6.00,故经历时间t 后,其质量为
m?gt (2) m0m?m0?得 t?dm1t?m dt65m0 (3)
6dm/dt将式(3)代入式(2),依据初始条件,可得火箭的最后速率
v??ulnmm5m0?gt?uln??2.47?103m?s?1 m0m06dm/dt 3 -17 质量为m 的质点在外力F 的作用下沿Ox 轴运动,已知t=0 时质点位于原点,且初始速度为零.设外力F 随距离线性地减小,且x =0 时,F =F0 ;当x =L 时,F =0.试求质点从x =0 处运动到x =L 处的过程中力F 对质点所作功和质点在x =L 处的速率.
分析 由题意知质点是在变力作用下运动,因此要先找到力F 与位置x 的关系,由题给
LF0条件知F?F0?x.则该力作的功可用式?Fdx 计算,然后由动能定理求质点速率.
0LF解 由分析知F?F0?0x, 则在x =0 到x =L 过程中作功,
LL?FW???F0?00L?FL?x?dx?0
2?由动能定理有 W?得x =L 处的质点速率为
12mv?0 2v?此处也可用牛顿定律求质点速率,即
F0L mF0?F0dvdvx?m?mv Ldtdx分离变量后,两边积分也可得同样结果.
3 -18 如图所示,一绳索跨过无摩擦的滑轮,系在质量为1.00 kg 的物体上,起初物体静止在无摩擦的水平平面上.若用5.00 N 的恒力作用在绳索的另一端,使物体向右作加速运动,当系在物体上的绳索从与水平面成30°角变为37°角时,力对物体所作的功为多少? 已知滑轮与水平面之间的距离d =1.00 m.
分析 该题中虽施以“恒力”,但是,作用在物体上的力的方向在不断变化.需按功的矢量定义式W?F?ds来求解.
解 取图示坐标,绳索拉力对物体所作的功为
?W??F?dx??Fcosθdx???x1x2Fxd?x22dx?1.69J
3 -19 一物体在介质中按规律x =ct3 作直线运动,c 为一常量.设介质对物体的阻力正比于速度的平方.试求物体由x0 =0 运动到x =l 时,阻力所作的功.(已知阻力系数为k)
分析 本题是一维变力作功问题,仍需按功的定义式W?F?dx来求解.关键在于寻找力函数F =F(x).根据运动学关系,可将已知力与速度的函数关系F(v) =kv2 变换到F(t),
进一步按x =ct3 的关系把F(t)转换为F(x),这样,就可按功的定义式求解.
解 由运动学方程x =ct3 ,可得物体的速度
?v?dx?3ct2 dt按题意及上述关系,物体所受阻力的大小为
F?kv2?9kc2t4?9kc2/3x4/3
则阻力的功为
W??F?dxW??F?dx??cos180dx???9kc2/3x4/3dx??00lol272/37/3kcl 73 -20 一人从10.0 m 深的井中提水,起始桶中装有10.0 kg 的水,由于水桶漏水,每升高1.00 m 要漏去0.20 kg 的水.水桶被匀速地从井中提到井口,求所作的功.
分析 由于水桶在匀速上提过程中,拉力必须始终与水桶重力相平衡.水桶重力因漏水而随提升高度而变,因此,拉力作功实为变力作功.由于拉力作功也就是克服重力的功,因此,只要能写出重力随高度变化的关系,拉力作功即可题3 -20 图求出.
解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有
F +P =0
在图示所取坐标下,水桶重力随位置的变化关系为
P =mg -αgy
其中α=0.2 kg/m,人对水桶的拉力的功为
W??F?dy???mg?agy?dy?882J
00l103 -21 一质量为0.20 kg 的球,系在长为2.00 m 的细绳上,细绳的另一端系在天花板上.把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开.求:(1) 在绳索从30°角到0°角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力.