物理学答案(第五版,上册)马文蔚

由式(1)、(2)可得安全带对人的平均冲力大小为

F?mg?Δ2ghΔ?mv??mg??1.14?103N

ΔtΔt解2 从整个过程来讨论.根据动量定理有

F?mg2h/g?mg?1.14?103N Δt3 -10 质量为m 的小球,在合外力F =-kx 作用下运动,已知x =Acosωt,其中k、ω、A 均为正常量,求在t =0 到t?π 时间内小球动量的增量. 2ω分析 由冲量定义求得力F 的冲量后,根据动量原理,即为动量增量,注意用式分前,应先将式中x 用x =Acosωt代之,方能积分.

解 力F 的冲量为

t2t2π/2ω?t2t1Fdt积

I??Fdt???kxdt???t1t10kAcosωtdt??kA ω即 Δ?mv???kA ω 3 -11 如图所示,在水平地面上,有一横截面S =0.20 m2 的直角弯管,管中有流速为v =3.0 m·s-1 的水通过,求弯管所受力的大小和方向.

分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp=Δm(vB -vA );此动量的变化是管壁在Δt时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F;由牛顿第三定律,自然就得到水流对管壁的作用力F′=-F.

解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυSΔt,弯曲部分AB 的水的动量的增量则为

Δp=Δm(vB -vA ) =ρυSΔt (vB -vA )

依据动量定理I =Δp,得到管壁对这部分水的平均冲力

F?从而可得水流对管壁作用力的大小为

I?ρSvΔt?vB?vA? ΔtF???F??2ρSv2??2.5?103N

作用力的方向则沿直角平分线指向弯管外侧.

3 -12 一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为19.6 m.爆炸1.00 s 后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为1.00×102 m.问第二块落在距抛出点多远的地面上.(设空气的阻力不计)

分析 根据抛体运动规律,物体在最高点处的位置坐标和速度是易求的.因此,若能求出第二块碎片抛出的速度,按抛体运动的规律就可求得落地

的位置.为此,分析物体在最高点处爆炸的过程,由于爆炸力属内力,且远大于重力,因此,重力的冲量可忽略,物体爆炸过程中应满足动量守恒.由于炸裂后第一块碎片抛出的速度可由落体运动求出,由动量守恒定律可得炸裂后第二块碎片抛出的速度,进一步求出落地位置.

解 取如图示坐标,根据抛体运动的规律,爆炸前,物体在最高点A 的速度的水平分量为

v0x?物体爆炸后,第一块碎片竖直落下的运动方程为

x1g?x1 (1) t02hy1?h?v1t?12gt 2当该碎片落地时,有y1 =0,t =t1 ,则由上式得爆炸后第一块碎片抛出的速度

h?v1?又根据动量守恒定律,在最高点处有

12gt2 (2) t11mv2x (3) 2110??mv1?mv2y (4)

22mv0x?联立解式(1)、(2)、(3) 和(4),可得爆炸后第二块碎片抛出时的速度分量分别为

v2x?2v0x?2x1g?100m?s?1 2hv2y?v1?h?12gt12?14.7m?s?1 t1爆炸后,第二块碎片作斜抛运动,其运动方程为

x2?x1?v2xt2 (5) y2?h?v2yt2?12gt2 (6) 2落地时,y2 =0,由式(5)、(6)可解得第二块碎片落地点的水平位置

x2 =500 m

3 -13 A、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50 kg 的重物,结果是A 船停了下来,而B 船以3.4 m·s-1的速度继续向前驶去.A、B 两船原有质量分别为0.5×103 kg 和1.0 ×103 kg,求在传递重物前两船的速度.(忽略水对船的阻力)

分析 由于两船横向传递的速度可略去不计,则对搬出重物后的船A 与从船B 搬入的重物所组成的系统Ⅰ来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B 与从船A 搬入的重物所组成的系统Ⅱ亦是这样.由此,分别列出系统Ⅰ、Ⅱ的动量守恒方程即可解出结果.

解 设A、B两船原有的速度分别以vA 、vB 表示,传递重物后船的速度分别以vA′ 、vB′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有

?mA?m?vA?mvB?mAv?A (1)

?mB?m?vB?mvA?mBv?B? (2)

由题意知vA′ =0, vB′ =3.4 m·s-1 代入数据后,可解得

vA??mBmv?B??0.40m?s?1 2?mB?m??mA?m??mvB??mA?m?mBv?B?mA?m??mB?m??m2?3.6m?s?1

也可以选择不同的系统,例如,把A、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解.

3 -14 质量为m′ 的人手里拿着一个质量为m 的物体,此人用与水平面成α角的速率v0 向前跳去.当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出.问:由于人抛出物体,他跳跃的距离增加了多少? (假设人可视为质点)

分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.

解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有

?m?m??v0cosα?m?v?m?v?u?

式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得

v0?v0cosα?人的水平速率的增量为

mu

m?m?mu

m?m?Δv?v?v0cosα?而人从最高点到地面的运动时间为

t?所以,人跳跃后增加的距离

v0sinα gΔx?Δvt?mv0sinα

?m?m??g *3 -15 一质量均匀柔软的绳竖直的悬挂着,绳的下端刚好触到水平桌面上.如果把绳的上端放开,绳将落在桌面上.试证明:在绳下落过程中的任意时刻,作用于桌面上的压力等于已落到桌面上绳的重量的三倍.

联系客服:779662525#qq.com(#替换为@)