数学学科教学论习题答案

用.

演绎和完全归纳是必然性的推理,是严格的科学证明方法.在数学的论证推理中,演绎是最基本的、最主要的方法,因为在用完全归纳法时,在对所研究对象的一切情况进行讨论的每个具体过程中,常常都要用演绎的方法.这一点,在数学归纳法中表现得特别明显.数学归纳法属于完全归纳法,总体上是归纳,而每一步又是演绎.单纯演绎推理没有想象的成分,这使得演绎推理具有了严谨性,然而它的创造性也比较小.在一定前提下,由演绎可以获得推出知识.不完全归纳和类比只是或然性的推理,但却是猜想的重要来源,有助于发现结论,作出判断,有时也能从中得到证明方法的启示.对于数学科学,最重要的是结论及其证明,但在中学数学教学中,还应重视结论引入的方法,让学生了解和体会是如何想到这些结论的,并逐步学会运用不完全归纳和类比这两种推理.这有助于形成和发展辩证思维和创造性思维,有助于培养分析问题和解决问题的能力.这正是传统数学教学比较忽视的.当前的数学教学改革对此已给予了高度的重视.当然,由不完全归纳和类比得到的结论,还要用其它方法研究其是否正确.正确的要用演绎法或数学归纳法加以证明,不正确的,要举出反例.以上两方面在数学归纳法研究中是互相结合,相辅相成的.最典型的,体现于用数学归纳法研究问题的完整过程中.第一步是观察、实验;第二步是进行不完全归纳,猜想出结论;第三步是用数学归纳法加以证明.

17.什么是数学证明?直接证法与间接证法的区别是什么? 答:应用逻辑方法来判断数学命题真实性的过程叫做数学证明.

由论题的已知条件和已知定义,公理,定理等作为论据,运用逻辑推理法则来证明论题结论真实性的证明方法,叫做直接证法.间接证法不是直接证明论题的真实性,而是证明反论题不真,或者证明与论题等效的命题的真实性,或者在互逆命题等效的条件下,通过证明论题的逆命题的真实性,从而肯定论题的真实性的一种证明方法.

18.什么是综合法、分析法?试深刻比较它们的异同与优缺点.

答:在数学的证明中“由因导果”的方法通常称为综合法,而“执果索因”的方法称为“分析法”.

综合法与分析法的逻辑依据是相同的,都是蕴涵的传递性,只是思考的顺序

41

相反.其中每个蕴涵都是已知的真命题.在数学中,证明一般都用综合法表述,因为综合法显得简捷,逻辑关系表现得很清楚.但是在数学教学中,综合法的表述常表现出它的弱点,每一步是在做什么,怎样做,并不那么容易看清楚,而每一步怎么想到的更容易使人困惑,尤其困难的是如何找出作为论证出发点的真命题,还有,为什么取那一个真命题为出发点也很难说清楚.因此,在教学中照本宣科地用综合法来论证,学生不仅难以弄明白,而且往往觉得是人为地想出来的.一般地,用分析法思考时,要给予论证的命题本身就是出发点,学生知道了应当从什么地方开始工作,就能够自觉地,充满信心地思考.显然综合法与分析法各有其优缺点,可以互相补充,各自的优点正好可以弥补另一方的不足.在实际论证一个命题时,先用分析法思考,发现可以作为论证出发点的真命题,再用综合法表达出证明过程,这常常是行之有效的方法,在数学教学中尤其应注意这一点.当然,分析法并不是总是行得通的.还有,对于一个论题,特别是较为复杂的论题,在实际思考探索它的证明时,常常不是单一地循着一个顺序,而是可以同时从题设和题断出发,分别使用综合法与分析法.逐步过渡到一个共同的中间过程,从而使思路得以接通.

19.什么是逆证法?它与分析法有何异同?逆证法的应用有何局限性?常在哪些情况下使用?

答:要证明“若A则D”.逆证法的证明过程如下:

1)证明D?C?…?B?A; 2)上面每一步的推理都是可逆的. 则得出“A?D”.

分析法与逆证法虽然都是以题断为出发点,但分析法的每一步都是寻求使一个命题成立的充分条件,而逆证法的1)中每一步是寻求使一个命题成立的必要条件.逆证法的1)是证了命题“若D则A”为真,因此2)是重要的,不可缺少的,也不能只是形式上说一说,必须每一步都加以真正检查.逆证法的2)实际上是保证了1)的每一步中,后者也是前者的充分条件,即D?C?…

?B?A,从而证得“A?D”.因此,逆证法在逻辑上是成立

>>鐏炴洖绱戦崗銊︽瀮<<
12@gma联系客服:779662525#qq.com(#替换为@)