保险精算学-笔记-涵盖(利息,生命表,寿险精算及实务,非寿险,风险理论,内容丰富)

2、人寿保险的分类

根据不同的标准,人寿保险有不同的分类:

(1) 以被保险人的受益金额是否恒定进行划分,可分为:定额受益保险,变额受益保险。

(2) 以保障期是否有限进行划分,可分为:定期寿险和终身寿险。 (3) 以保单签约日和保障期是否同时进行划分,可分为:非延期保险和延期保险。

(4) 以保障标的进行划分,可分为:人寿保险(狭义)、生存保险和两全保险。 3、人寿保险的性质

(1) 保障的长期性:寿险的保障期通常比较长。这使得从投保到赔付期间的投资受益(利息)成为不容忽视的因素。因而,寿险产品纯保费的厘定通常要考虑利率的影响。

(2) 保险赔付金额和赔付时间的不确定性:人寿保险的赔付金额和赔付时间依赖于被保险人的生命状况。以狭义的定期变额人寿保险为例,如果被保险人在保障期内没有死亡,到期赔付金额为零;如果被保险人在保障期内死亡,保险公司将在被保险人死亡时给付与死亡时间相关的某个数额的赔偿金。被保险人的死亡时间是一个随机变量。这就意味着保险公司的赔付额也是一个随机变量,它依赖于被保险人剩余寿命分布。

(3) 被保障人群的大数性:对单个被保险人而言,他会在什么时刻死亡是不可估计的。但对大量的被保险人构成的一个大数群体而言,他们的剩余寿命分布是有统计规律的。这就意味着,保险公司可以依靠概率统计的原理计算出平均赔付并可预测将来的风险。 二、 人寿保险趸缴纯保费厘定的原理 1、假定

传统的人寿保险产品的趸缴纯保费是在如下假定下厘定的:

假定一:同性别、同年龄、同时参保的被保险人的剩余寿命独立同分布。 假定二:被保险人的剩余寿命分布可以用经验生命表进行拟合。

假定三:保险公司可以预测将来的投资受益(即预定利率)。 2、原理

保险公司在上面三个假定条件下,按照净均衡的原则来厘定趸缴纯保费的数额。 所谓净均衡原则,即保费收入的期望现时值正好等于将来的保险赔付金的期望现时值。它的实质是在统计意义上的收支平衡。是在大数场合下,收费期望现时值等于支出期望现时值。

而趸缴纯保费是指在保单生效日一次性支付将来保险赔付金的期望现时值。 记

:保单生效到赔付的时间

:从赔付时刻回溯至保单生效时的利息贴现,称为贴现函数。

:赔付时刻赔付的金额,或者说是被保险人的受益金额,称为受益函数。 :受益赔付额回溯到保单生效时的现时值,称为现时随机变量,它是一个依赖于赔付时间、赔付金额和贴现函数的随机变量,简记为 ,有

按照净均衡原则,趸缴纯保费就等于

第二节 死亡即刻赔付保险趸缴纯保费的厘定 一、 死亡即刻赔付的含义

1、 死亡即刻陪付就是指如果被保险人在保障期内发生保险责任范围内的死亡 ,保险公司将在死亡事件发生之后,立刻给予保险赔付。它是在实际应用场合,保险公司通常采用的理赔方式。

2、 由于死亡可能发生在被保险人投保之后的任意时刻,所以死亡即刻陪付时刻是一个连续随机变量,它距保单生效日的时期长度就等于被保险人签约时的剩余寿命。

二、 主要险种死亡即刻赔付趸缴纯保费的厘定 1、 年定期寿险

(1)定义:保险人只对被保险人在投保后的 年内发生的保险责任范围内的死亡给付保险金的险种,又称为 年死亡保险。 (2)假定:

的人投保保额为1单位元数的 年定期寿险

(3)基本函数关系

(4) 年定期寿险死亡即刻陪付趸缴纯保费(

)的厘定

(5)现值随机变量的方差

2、终身寿险

(1)定义:保险人对被保险人在投保后任何时刻发生的保险责任范围内的死亡均给付保险金的险种。 (2)假定:

的人投保保额为1单位元数的终身寿险

(3)基本函数关系

(4)终身寿险死亡即刻赔付趸缴纯保费( )的厘定

(5)现值随机变量的方差

3、延期 年的终身寿险

(1) 定义:保险人只对被保险人在投保 年后发生的保险责任范围内的死亡给付保险金的险种。 (2)假定:

的人投保保额为1单位元数的延期 年的终身寿险

(3)基本函数关系

(4)延期 年的终身寿险死亡即刻陪付趸缴纯保费(

)的厘定

(5)现值随机变量的方差

联系客服:779662525#qq.com(#替换为@)