组合数学习题解答

1.证任一正整数n可唯一地表成如下形式:证:对n用归纳法。

先证可表示性:当n=0,1时,命题成立。 假设对小于n的非负整数,命题成立。 对于n,设k!≤n<(k+1)!,即0≤n-k!<k·k!

,0≤ai≤i,i=1,2,?。

由假设对n-k!,命题成立,设再证表示的唯一性:

,其中ak≤k-1,

,命题成立。

, 不妨设aj>bj,令j=max{i|ai≠bi}

aj·j!+aj-1·(j-1)!+?+a1·1! =bj·j!+bj-1·(j-1)!+?+b1·1!,

另一种证法:令j=max{i|ai≠bi}

, 两边被(j+1)!除,得余数aj·j!=bj·j!,矛盾.

2.证 nC(n-1,r)=(r+1)C(n,r+1).并给出组合意义。

证:组合意义:

等式左边:n个不同的球,先任取出1个,再从余下的n-1个中取r个; 等式右边:n个不同球中任意取出r+1个,并指定其中任意一个为第一个。 显然两种方案数相同。

3.证法放球:

证:设有n个不同的小球,A、B两个盒子,A盒中恰好放1个球,B盒中可放任意个球。有两种方

①先从n个球中取k个球(k≥1),再从中挑一个放入A盒,方案数共为盒。

,其余球放入B

②先从n个球中任取一球放入A盒,剩下n-1个球每个有两种可能,要么放入B盒,要么不放,故方案数为n2n-1 .

显然两种方法方案数应该一样。

4.有n个不同的整数,从中取出两组来,要求第一组数里的最小数大于第二组的最大数。问有多少种方案?

解:设取的第一组数有a个,第二组有b个,而要求第一组数中最小数大于第二组中最大的,即只要取出一组m个数(设m=a+b),从大到小取a个作为第一组,剩余的为第二组。此时方案数为C(n,m)。从m个数中取第一组数共有m-1中取法。

总的方案数为.

5.六个引擎分列两排,要求引擎的点火的次序两排交错开来,试求从一特定引擎开始点火有多少种方案。

解:第1步从特定引擎对面的3个中取1个有C(3,1)种取法,第2步从特定引擎一边的2个中取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。所以共有C(3,1)·C(2,1)·C(2,1)=12种方案。 6.试求从1到1000000的整数中,0出现了多少次?

解:首先所有数都用6位表示,从000000到999999中在每位上0出现了105次,所以0共出现了6·105次,0出现在最前面的次数应该从中去掉, 000000到999999中最左1位的0出现了105次, 000000到099999中左数第2位的0出现了104次, 000000到009999左数第3位的0出现了103次, 000000到000999左数第4位的0出现了102次, 000000到000099左数第5位的0出现了101次, 000000到000009左数第6位的0出现了100次。 另外1000000的6个0应该被加上。

所以0共出现了 6·105-105-104-103-102-101-100+6=488895次。

7.n个男n个女排成一男女相间的队伍,试问有多少种不同的方案?若围成一圆桌坐下,又有多少种不同的方案?

解:把n个男、n个女分别进行全排列,然后按乘法法则放到一起,而男女分别在前面,应该再乘2,即方案数为2·(n!)2个.

围成一个圆桌坐下,根据圆排列法则,方案数为2·(n!)2/(2n)个.

8.n个完全一样的球,放到r个有标志的盒子,n≥r,要求无一空盒,试证其方案数为入r个不同的盒子,每个盒子可以放任意个球,可以有空盒,根据可重组合定理可得共有

.

证:每个盒子不空,即每个盒子里至少放一个球,因为球完全一样,问题转化为将n-r个小球放C(n-r+r-1,n-r)=C(n-1,n-r)中方案。 根据C(n,r)=C(n,n-r),可得C(n-1,n-r)=C(n-1,n-1-(n-r))=C(n-1,r-1)个方案。证毕。

9.设,p1、p2、?、pl是l个不同的素数,试求能整除尽数n的正整数数目.

解:每个能整除尽数n的正整数都可以选取每个素数pi从0到ai次,即每个素数有ai+1种选择,所以能整除n的正整数数目为(a1+1)·(a2+1)·?·(al+1)个。 10.试求n个完全一样的骰子掷出多少种不同的方案?

解:相当于把n个小球放入6个不同的盒子里,为可重组合,即共有C(n+6-1,n)中方案,即C(n+5,n)中方案。

11.凸10边形的任意三个对角线不共点,试求这凸10边形的对角线交于多少个点?又把所有对角线分割成多少段?

解:根据题意,每4个点可得到两条对角线,1个对角线交点,从10个顶点任取4个的方案有C(10,4)中,即交于210个点。

根据图论知识,每个对角线交点有4个度,每个顶点去掉与相邻两个顶点的连线还有7个度,可以得到

条边

12.试证一整数是另一个整数的平方的必要条件是除尽它的数目为奇数。 证:根据第9题的结论,而

l),所以乘积为奇数。 证毕。

13.统计力学需要计算r个质点放到n个盒子里去,并服从下列假定之一,问有多少种不同的图象。假设盒子始终是不同的。

(a)Maxwell-Boltzmann假定:r个质点是不同的,任何盒子可以放任意数个. (b)Bose-Einstein假定:r个质点完全相同,每一个盒子可以放任意数个. (c)Fermi-Dirac假定:r个质点都完全相同,每盒不超过一个.

解:(a) 每个质点放入盒子都有n种选择,r个质点共有rn种不同的图案。 (b) 可重组合,共有C(n+r-1,r)种图案。 (c) 一般组合问题,共有C(n,r)种图案。

14.从26个英文字母中取出6个字母组成一字,若其中有2或3个母音,问分别可构成多少个字(不允许重复)?

解:其中有2个母音可构成C(21,4)C(5,2)6!个字。 其中有3个母音可构成C(21,3)C(5,3)6!个字。

, 能被(a1+1)·(a2+1)·?·(al+1)个数整除,

,能被(2a1+1)·(2a2+1)·?·(2al+1)个数整除,2ai+1为奇数(0≤i≤

15.给出组合意义. 解:如图:

可看作是格路问题:左边第i项为从点C到点(-1,i)直接经过(0,i)的路径,再到点B的所有路径数。左边所有项的和就是从点C到B的所有路径数即为右边的意义。

16.给出的组合意义。

解:C(n+1,r+1)是指从n+1个元素a1, a2,?,an+1中任取r+1个进行组合的方案数。

左边:若一定要选an+1,则方案数为C(n,r).若不选an+1,一定要选an,则方案数为C(n-1,r).若不选an+1,an,?ar+2,则方案数为C(r,r). 所有这些可能性相加就得到了总方案数。

17.证明:

证:组合意义,右边:m个球,从中取n个,放入两个盒子,n个球中每个球都有两种放法,得到可能的方案数。左边:第i项的意义是一个盒子中放i个,另一个盒子放n-i个,所有的方案数相加应该等于右边。

证毕。

18.从n个人中选r个围成一圆圈,问有多少种不同的方案? 解:圆排列:共有P(n,r)/r种不同的方案。

19.分别写出按照字典序由给定排列计算其对应序号的算法及由给定序号计算其对应排列的算法。(解略)

联系客服:779662525#qq.com(#替换为@)