中考函数综合测试卷(一)

求出k,代入后求出不等式的解集即可. 解:∵将(﹣1,1)代入y=kx+3得1=﹣k+3, ∴k=2, 即把k=2代入y=kx+3得:y=2x+3, ∴2x+3<0, ∴x<﹣, 即不等式kx+3<0的解集是x<﹣. 点评: 本题考查了一次函数与一元一次不等式的关系的应用. 解答: 18.(8分)(2012?云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.

(1)分别求反比例函数和一次函数的解析式(关系式); (2)连接OA,求△AOC的面积.

考点: 反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;待定系数法求反比例函数解析式;三角形

?2010-2015 菁优网

的面积. 分析: (1)设一次函数解析式为y1=kx+b(k≠0);反比例函数解析式为y2=(a≠0),将A(2,1)、B(﹣1,﹣2)代入y1得到方程组,求出即可;将A(2,1)代入y2得出关于a的方程,求出即可; (2)求出C的坐标,根据三角形的面积公式求出即可. 解答: 解:(1)设一次函数解析式为y1=kx+b(k≠0);反比例函数解析式为y2=(a≠0), ∵将A(2,1)、B(﹣1,﹣2)代入y1得:, ∴, ∴y1=x﹣1; ∵将A(2,1)代入y2得:a=2, ∴; 答:反比例函

?2010-2015 菁优网

数的解析式是y2=,一次函数的解析式是y1=x﹣1. (2)∵y1=x﹣1, 当y1=0时,x=1, ∴C(1,0), ∴OC=1, ∴S△AOC=×1×1=. 答:△AOC的面积为. 点评: 本题考查了对一次函数与反比例函数的交点,三角形的面积,用待定系数法求一次函数、反比例函数的解析式的应用,通过做此题培养了学生的计算能力,题目具有一定的代表性,是一道比较好的题目. 19.(8分)(2014?安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;

(2)已知关于x的二次函数y1=2x﹣4mx+2m+1和y2=ax+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值. 考点: 二次函数的性质;二次函数的最值. 专题: 代数综合题;新定义. 分析: (1)只需任222

?2010-2015 菁优网

选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可. (2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题. 解答: 解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k, 当a=2,h=3,k=4时, 二次函数的关系式为y=2(x﹣3)2+4. ∵2>0, ∴该二次函数图象的开口向上. 当a=3,h=3,k=4时, 二次函数的关系式为y=3(x﹣3)2+4. ∵3>0, ∴该二次函数图象的开口

?2010-2015 菁优网

联系客服:779662525#qq.com(#替换为@)