Abstract
Higher mathematics and economics are two indispensable components on current world¡¯s development£¬with the continuous development of world economy and the continuous improvement of the mathematical theory£¬mathematics and economics¡¯ relationship is becoming more and more closer£®Especially since the 21st century£¬with the rapid development of world economy£¬mathematical knowledge¡¯s possession of status is becoming more and more outstanding in the field of the economics£®This article is aimed at to make simple summary analysis in the unary function theory of calculus that is belonged to the advanced mathematics£¬and which partial application in economics£®By the analysis of Marginal£¬the analysis of Elastic£¬to make a further understand on the important role of unary function differential calculus in economics£®By studying the application of the indefinite integral and definite integral which are part of the integral calculus in economics£¬ strengthen the understanding of mathematical knowledge¡¯s function in economics£¬so as to deepen the understanding of mathematical knowledge and knowledge of economics£¬and master some simple method of mathematical knowledge to solve the economic problems£®
Key words: Marginal analysis; Elastic analysis; Unary function differential calculus; Unary function integral calculus
II
Ë绯ѧԺ2013½ì±¾¿ÆÉú±ÏÒµÂÛÎÄ
µÚ1Õ һԪº¯Êý΢·ÖѧÔÚ¾¼Ã·ÖÎöÖеÄÁ½ÖÖÓ¦ÓÃ
Ëæ×ÅÊÀ½ç¾¼ÃµÄ²»¶Ï·¢Õ¹£¬Êýѧ֪ʶ¶Ô¾¼ÃÁìÓòÏà¹ØÎÊÌâµÄÑо¿Ô½À´Ô½·¢»Ó³ö²»¿ÉÌæ´úµÄ¶ÀÌØ×÷Óã®Ò»Ôªº¯Êý΢·ÖѧÊÇÊýѧÖеÄÒ»¸öÖØÒª·ÖÖ§£¬Ò²Êǽâ¾ö¾¼ÃѧÎÊÌâµÄÖØÒª¹¤¾ßÖ®Ò»£®
΢·ÖѧÀíÂÛÊÇ×ÔÑо¿ÎïÌåÔ˶¯µÄ˲¼äËÙ¶ÈÎÊÌâºÍÇóÒ»°ãÇúÏßÉÏijµã´¦µÄÇÐÏßÎÊÌ⿪ʼ½¨Á¢£¬²¢Öð½¥ÍêÉÆÆðÀ´µÄ£®Òò´Ë£¬µ¼ÊýÄÜ·´Ó³Ä³Ò»±ä»¯¹ý³ÌÖк¯ÊýµÄÒò±äÁ¿Ïà¶ÔÓÚÆä×Ô±äÁ¿µÄ±ä»¯¿ìÂý³Ì¶È£®º¯Êýy?f(x)ÔÚµãx0µÄµ¼ÊýÊÇ´ÓÒò±äÁ¿yÔÚÒÔx0ºÍ
x0??xΪ¶ËµãµÄÇø¼äÉÏµÄÆ½¾ù±ä»¯Âʳö·¢£¬ÔÚ?x?0ʱ£¬Æ½¾ù±ä»¯Âʵļ«ÏÞÖµ¼´Îªf?(x0)£®ÆäÑϸñµÄÊýѧ¶¨ÒåΪ
¶¨Òå1[1] É躯Êýy?f(x)ÔÚµãx0µÄij¸öÁÚÓòÄÚÓж¨Ò壬µ±×Ô±äÁ¿xÔÚx0´¦È¡µÃ¸Ä±äÁ¿?x(?x?0)ʱ£¬ÏàÓ¦µÄÒò±äÁ¿yÈ¡µÃµÄ¸Ä±äÁ¿Îª?y?f(x0??x)?f(x0)£®Èç¹û¼«ÏÞ
f(x0??x)?f(x0)?y?lim
?x?0?x?x?0?xlim´æÔÚ£¬Ôò³Æº¯Êýy?f(x)ÔÚµãx0´¦¿Éµ¼£¬²¢³Æ´Ë¼«ÏÞֵΪº¯Êýf(x)ÔÚµãx0´¦µÄµ¼Êý£¬¼Ç×÷f?(x0)£¬¼´
f?(x0)?limf(x0??x)?f(x0)?y?lim£¬
?x?0?x?x?0?xÒ²¿É¼ÇΪ
y?x?x£¬
odydf£¬
dxx?x0dx£®
x?x0½«µ¼ÊýµÄ¸ÅÄîÒý½ø¾¼Ãѧ֮ºó£¬¶Ô¾¼ÃѧÎÊÌâµÄ·ÖÎöÓëÑо¿²úÉúÁ˺ܴóÓ°Ï죮ÀûÓõ¼Êý¿ÉÒÔ¶¨Á¿·ÖÎöºÜ¶àÒÔǰÎÞ·¨·ÖÎöµÄ¾¼ÃѧÎÊÌ⣮µ¼ÊýÔÚ¾¼ÃѧÖеÄÓ¦Óò»½öΪһЩ¾¼ÃѧÎÊÌâµÄÇó½âÌṩÁ˸üΪ¼ò±ãµÄ·½·¨£®µ¼ÊýÔÚ¾¼ÃѧÖÐ×î³£¼ûµÄÓ¦ÓÃÊDZ߼ÊÎÊÌâºÍµ¯ÐÔÎÊÌâµÄ·ÖÎö£®
¶ÔÓÚÆóÒµÀ´Ëµ£¬±ß¼ÊÎÊÌâºÍµ¯ÐÔÎÊÌâÓëÆä¾ö²ßºÍ·¢Õ¹Ï¢Ï¢Ïà¹Ø£®±¾Õ½«´Óµ¼ÊýÔڱ߼ʷÖÎöÖеÄÓ¦Óá¢ÔÚµ¯ÐÔ·ÖÎöÖеÄÓ¦ÓÃÁ½¸ö·½ÃæÀ´½éÉÜÒ»Ôªº¯Êý΢·ÖѧÔÚ¾¼Ã·ÖÎöÖеÄһЩӦÓã®
1
Ë绯ѧԺ2013½ì±¾¿ÆÉú±ÏÒµÂÛÎÄ
µÚ1½Ú µ¼ÊýÔڱ߼ʷÖÎöÖеÄÓ¦ÓÃ
1.1 µ¼ÊýÔڱ߼ʳɱ¾ÖеÄÓ¦ÓÃ
¸ù¾Ý¾¼ÃѧÀíÂÛ£¬³É±¾º¯Êý¿É±íʾΪC?C(Q)?C0?C1(Q)£¬ÆäÖÐC0Ϊ¹Ì¶¨³É±¾£¬
C1(Q)Ϊ¿É±ä³É±¾£¬QΪ²úÁ¿£®ÏÔÈ»£¬²úÁ¿Q·¢Éú¸Ä±ä?Qʱ£¬»áÒýÆð¿É±ä³É±¾C1(Q)µÄ¸Ä±ä£¬´Ó¶øÒý·¢×ܳɱ¾C(Q)µÄ±ä»¯£®ÓÐʱÐèÒªÑо¿µ±²úÁ¿Q×Ôijһˮƽ¿ªÊ¼ÔÙ¶àÉú²úÒ»¸öµ¥Î»²úÆ·(»òÉÙÉú²úÒ»¸öµ¥Î»²úÆ·)µÄ»°£¬ËùÒý·¢×ܳɱ¾µÄÔö¼ÓÁ¿(¼õÉÙÁ¿)£¬¼´Îª×ܳɱ¾C¶Ô²úÁ¿QµÄµ¼Êý
C?(Q)?lim?CC(Q??Q)?C(Q)?lim£¬
?Q?0?Q?Q?0?Q³ÆÖ®Îª±ß¼Ê³É±¾£®Ëü·´Ó³ÁË×ܳɱ¾¶Ô²úÁ¿µÄ±ä»¯ÂÊ£®ÓÃMCÀ´±íʾC?(Q)£¬Ôò±ß¼Ê³É±¾µÄ¾¼ÃѧÒâÒåÊǵ±²úÁ¿ÎªQʱ£¬Ã¿ÔÙ¶àÉú²úÒ»¸öµ¥Î»²úÆ·ËùÔö¼ÓµÄ³É±¾£¬¼´±ß¼Ê³É±¾
C?(Q)ÔÚÊýÖµÉϵÈÓÚµÚQ?1¸ö²úÆ·µÄ³É±¾[2]£®
1Àý1 Éè×ܳɱ¾¹ØÓÚ²úÁ¿QµÄº¯ÊýΪC(Q)?300?5Q?Q2£¬ÐèÇóÁ¿x¹ØÓÚ¼Û¸ñp2µÄº¯ÊýΪp?100£¬²¢Éè´ËʱÊг¡´ïµ½¾ùºâÇÒÉú²úµÄÉÌÆ·È«²¿Âô³ö£¬ÊÔÇó±ß¼Ê³É±¾£® x½â Óɱ߼ʳɱ¾µÄ¶¨Òå¿ÉÖª£¬±ß¼Ê³É±¾MCµÈÓÚ×ܳɱ¾º¯ÊýC(Q)µÄµ¼Êý£¬¼´
MC?C?(Q)?5?Q£® 1Òò´Ë£¬º¯ÊýC(Q)?300?5Q?Q2µÄ±ß¼Ê³É±¾ÎªMC?5?Q£®
210010000ÓÉp?µÃµ½Æä·´º¯Êýx?£®ÓÖÓÉÓÚ´ËʱÊг¡´ïµ½¾ùºâ£¬¿ÉÖªÐèÇóÁ¿µÈÓÚÏú
p2xÊÛÁ¿£®¸ù¾ÝÌâÒ⣬ÏúÊÛÁ¿µÈÓÚ²úÁ¿£¬Ôò
10000£¬ Q?x?p2¿ÉµÃ
10000MC?5?£® 2p ÓÉÀý1¿ÉÒÔ¿´³öµ±²úÆ·µÄ¹Ì¶¨²úÁ¿²»Í¬Ê±£¬Ôö¼Óµ¥Î»²úÆ·µÄ²úÁ¿£¬»áʹ²úÆ·µÄ×ܳɱ¾·¢Éú±ä»¯£®Óɶ¨Òå¿ÉÖª±ß¼Ê³É±¾Îª×ܳɱ¾º¯ÊýµÄµ¼Êý£®Í¬Ê±¿ÉÖª²úÆ·¼Û¸ñ²»Í¬Ê±£¬Ò²»áʹ±ß¼Ê³É±¾·¢Éú±ä»¯£®Ôڱ߼ʳɱ¾Óë¼Û¸ñµÄ¹ØÏµÊ½ÖУ¬±ß¼Ê³É±¾º¯ÊýÊǼ۸ñº¯ÊýµÄ·´º¯Êý£®µ±¼Û¸ñÔö¼Óʱ£¬±ß¼Ê³É±¾½«¼õÉÙ£¬Í¬Ñù£¬µ±¼Û¸ñ¼õÉÙʱ£¬±ß¼Ê³É±¾½«Ôö¼Ó£®Àû
2
Ë绯ѧԺ2013½ì±¾¿ÆÉú±ÏÒµÂÛÎÄ
Óñ߼ʳɱ¾¿ÉÒԵõ½³É±¾µÄ×îСֵ£¬Í¬Ê±Ò²¿ÉÒԵóöÀûÈóµÄ×î´óÖµ£¬´Ó¶øÊ¹µÃÆóÒµ¿ÉÒÔʵÏÖÔÚÉú²ú¹ý³ÌÖÐËù×·ÇóµÄ×î´óÀûÒæ£®
1.2 µ¼ÊýÔڱ߼ÊÊÕÒæÎÊÌâÖеÄÓ¦ÓÃ
ÔÚÏúÊÛ¹ý³ÌÖУ¬×ÜÊÕÒæº¯ÊýRÊǹØÓÚÏúÊÛÁ¿QµÄº¯Êý£¬µ±ÏúÁ¿´ïµ½Ä³Ò»ÖµÊ±ÔÙ¶àÏúÊÛ(ÉÙÏúÊÛ)Ò»µ¥Î»²úÆ·¾Í»áÒýÆðÊÕÒæµÄÏàÓ¦±ä»¯£®
¶¨Òå1 ÉèÏúÊÛij²úÆ·µÄ×ÜÊÕÒæº¯ÊýΪR?R(Q)(QÊÇÏúÊÛÁ¿)£¬ÔòR(Q)¶ÔÆä×Ô±äÁ¿QµÄµ¼Êý
R?(Q)?lim?RR(Q??Q)?R(Q)?lim
?Q?0?Q?Q?0?Q³ÆÎª±ß¼ÊÊÕÒæ£®Ëü·´Ó³ÁË×ÜÊÕÒæ¶ÔÏúÊÛÁ¿µÄ±ä»¯ÂÊ£®Æä¾¼ÃÒâÒåΪR?(Q)½üËÆµÈÓÚÏúÊÛÁ¿ÎªQµ¥Î»Ê±£¬ÔÙ¶à(»òÉÙ)ÏúÊÛÒ»¸öµ¥Î»²úÆ·ËùÒýÆðµÄÊÕÒæµÄ±ä»¯Á¿£®
¸ù¾ÝÒÔÉÏ·ÖÎö¿ÉµÃ³ö
ÔÚÏúÊÛÁ¿ÎªQʱ£¬ÈôR?(Q)?0£¬Ôò×ÜÊÕÈ뽫Ôö¼ÓR?(Q)£» ÔÚÏúÊÛÁ¿ÎªQʱ£¬ÈôR?(Q)?0£¬Ôò×ÜÊÕÈ뽫¼õÉÙR?(Q)£» ÔÚÏúÊÛÁ¿ÎªQʱ£¬ÈôR?(Q)?0£¬Ôò×ÜÊÕÈë²»±ä£®
Éè²úÆ·µÄÐèÇóº¯ÊýΪQ?f(p)£¬ÆäÖÐp±íʾ¼Û¸ñ£®ÓÉÓÚµ±¼Û¸ñÉÏÕÇʱÐèÇóÁ¿Ò»°ã»á¼õÉÙ£¬Òò´Ë´Ëʱ²úÆ·µÄÐèÇóº¯ÊýÊÇÆä¼Û¸ñµÄ¼õº¯Êý£¬Æä·´º¯Êýp??(Q)Ò²Êǵ¥µ÷µÝ¼õµÄº¯Êý£¬¼´¼Û¸ñpÊǹØÓÚÏúÁ¿QµÄ¼õº¯Êý£®¼Ù¶¨×ÜÊÕÒæµÈÓÚ³öÊÛ²úÆ·µÄÊýÁ¿Ó뵥λ²úÆ·¼Û¸ñµÄ³Ë»ý£¬Ôò¿É֪ÿ³öÊÛQµ¥Î»²úƷʱ×ÜÊÕÒæÎª
R(Q)?Q?p?Q??(Q)£¬
¸ù¾Ý±ß¼ÊÊÕÒæµÄ¶¨Ò壬ÀûÓÃ΢·ÖѧÖг˻ýº¯ÊýµÄÇóµ¼·¨Ôò£¬Æä±ß¼ÊÊÕÒæÎª
R?(Q)?[Q??(Q)]???(Q)?Q???(Q)£® (1.1)
ÓÉÆä¿ÉµÃµ½ÒÔϾ¼ÃѧÑо¿µÄ½áÂÛ
(1)Èô²úÆ·µÄ¼Û¸ñÓëÆäÏúÊÛÁ¿Î޹أ¬¼´¼Û¸ñp??(Q)Ϊ³£Êýʱ£¬ÔòR?(Q)??(Q)£¬¸Ã²úÆ·µÄ±ß¼ÊÊÕÒæµÈÓÚ¼Û¸ñ£®ÕâÖÖÇé¿öÖ»ÓÐÔÚÍêÈ«¾ºÕùÊг¡µÄ¶ÌÆÚ¾ùºâÌõ¼þϲŻá³öÏÖ£®
(2)ÓÉÉÏÊö¹«Ê½(1.1)¿ÉÖªÓÉÓÚp??(Q)ÊǼõº¯Êý£¬¸ù¾Ý΢·ÖѧÀíÂÛ£¬ÓÐ??(Q)?0£¬¶ÔÓÚÈÎÒâµÄÏúÊÛÁ¿Q(Q?0)£¬¶¼ÓÐQ???(Q)?0£¬Òò´Ë±ß¼ÊÊÕÒæÐ¡ÓÚ¼Û¸ñ£®ÕâÖÖÇé¿öÊÇ
3