微积分在经济学中的应用

Abstract

Higher mathematics and economics are two indispensable components on current world’s development,with the continuous development of world economy and the continuous improvement of the mathematical theory,mathematics and economics’ relationship is becoming more and more closer.Especially since the 21st century,with the rapid development of world economy,mathematical knowledge’s possession of status is becoming more and more outstanding in the field of the economics.This article is aimed at to make simple summary analysis in the unary function theory of calculus that is belonged to the advanced mathematics,and which partial application in economics.By the analysis of Marginal,the analysis of Elastic,to make a further understand on the important role of unary function differential calculus in economics.By studying the application of the indefinite integral and definite integral which are part of the integral calculus in economics, strengthen the understanding of mathematical knowledge’s function in economics,so as to deepen the understanding of mathematical knowledge and knowledge of economics,and master some simple method of mathematical knowledge to solve the economic problems.

Key words: Marginal analysis; Elastic analysis; Unary function differential calculus; Unary function integral calculus

II

绥化学院2013届本科生毕业论文

第1章 一元函数微分学在经济分析中的两种应用

随着世界经济的不断发展,数学知识对经济领域相关问题的研究越来越发挥出不可替代的独特作用.一元函数微分学是数学中的一个重要分支,也是解决经济学问题的重要工具之一.

微分学理论是自研究物体运动的瞬间速度问题和求一般曲线上某点处的切线问题开始建立,并逐渐完善起来的.因此,导数能反映某一变化过程中函数的因变量相对于其自变量的变化快慢程度.函数y?f(x)在点x0的导数是从因变量y在以x0和

x0??x为端点的区间上的平均变化率出发,在?x?0时,平均变化率的极限值即为f?(x0).其严格的数学定义为

定义1[1] 设函数y?f(x)在点x0的某个邻域内有定义,当自变量x在x0处取得改变量?

>>閻忕偞娲栫槐鎴﹀礂閵婏附鐎�<<
12@gma联系客服:779662525#qq.com(#替换为@)