(2)¡õ¡õ¡õ¡õ10 (3)56.100000
(4) ¡õ¡õ¡õ¡õ¡õ¡õ3.141600 (5)5.68100e+02
(6) ¡õ¡õ¡õ3.14160e+00 (7)3.1416
(8) ¡õ¡õ¡õ¡õ¡õ¡õ3.1416
²Î¿¼·ÖÎö£º²ÉÓÃg¸ñʽÊä³öÊý¾Ýʱ£¬µ±Êý¾Ý<=10-5»ò>=107ʱ£¬°´Ö¸Êý·½Ê½Êä³ö£¨È±Ê¡ÕýÊý11룬¸ºÊý12룩£¬·ñÔò°´Ð¡Êý·½Ê½Êä³ö£¨È±Ê¡º¬Ð¡Êýµã×Ü¿í¶È×î¶à7룩¡£ÇÒ²»Êä³öÎÞÒâÒåµÄ0£¨ºóÃæ£©ºÍСÊýµã¡£ 3.34 ÒÔϳÌÐòµÄÊä³ö½á¹ûÊÇ£¨ £©¡£
#include
{float a=123.456;double b=8765.4567; printf(\printf(\printf(\printf(\printf(\printf(\printf(\}
²Î¿¼´ð°¸£º(1)123.456000
(2) ¡õ¡õ¡õ¡õ¡õ¡õ¡õ123.456 (3)123.4560 (4)8765.456700
(5) ¡õ¡õ¡õ¡õ¡õ¡õ8765.456 (6)8765.4560 (7)8765.4560
*3.35 ÒÔÏÂprintfÓï¾äÖÐ*µÄ×÷ÓÃÊÇ£¨ £©£¬Êä³ö½á¹ûÊÇ£¨ £©¡£
#include
printf(\i++;
printf(\i++;
printf(\}
²Î¿¼´ð°¸£º
£¨1£©¿Éʹͬһ»òÏàͬÊä³ö¸ñʽÊý¾ÝÊä³ö¿í¶ÈµÃÒԸı䣨¶¯Ì¬Óò¿í¿ØÖÆ£© £¨2£©##1 ##¡õ2 ##¡õ¡õ3
3.36 ÒÔÏÂprintfÓï¾äÖеÄ\µÄ×÷ÓÃÊÇ£¨ £©£¬¸Ã³ÌÐòµÄÊä³ö½á¹ûÊÇ£¨ £©¡£
#include
{int x=12;double a=3.1415926; printf(\
printf(\printf(\printf(\}
²Î¿¼´ð°¸£º
£¨1£©Êä³öÊý¾Ý×ó¶ÔÆë £¨2£© ¡õ¡õ¡õ¡õ12##
12¡õ¡õ¡õ¡õ##
¡õ¡õ3.1415926000## 3.1415926000¡õ¡õ##
*3.37 ÒÔϳÌÐòµÄÊä³ö½á¹ûÊÇ£¨ £©¡£
#include
{int a=325;double x=3.1415926; printf(\ x=%+e\\n\}
²Î¿¼´ð°¸£ºa=+00325 x=+3.14159e+00 *3.38ÒÔϳÌÐòµÄÊä³ö½á¹ûÊÇ£¨ £©¡£
#include
printf(\ a=%#o\\n\printf(\ a=%#x\\n\}
²Î¿¼´ð°¸£ºa=374¡õ¡õa=0374 a=fc¡õ¡õa=0xfc
3.39ÒÔϳÌÐòµÄÊä³ö½á¹ûÊÇ£¨ £©¡£
int x=7281;
printf(\
printf(\printf(\printf(\printf(\
²Î¿¼´ð°¸£º(1)x=7281,x=¡õ¡õ7281,x=¡õ16161,x=¡õ¡õ1c71,x=¡õ¡õ7281 (2)x=7281,x=7281¡õ¡õ,x=$7281¡õ¡õ,x=$007281,x=d (3)x=+7281,x=¡õ+7281,x=+0007281 (4)x=16161,x=016161 (5)x=1c71,x=0x1c71
**3.40 ¼ÙÉè±äÁ¿aºÍb¾ùΪÕûÐÍ£¬ÒÔÏÂÓï¾ä¿ÉÒÔ²»½èÖúÈκαäÁ¿°Ña¡¢bÖеÄÖµ½øÐн»»»¡£ÇëÌî¿Õ¡£
a+=( );b=a-( );a-=( ); ²Î¿¼´ð°¸£ºb b b
3.41 ¼ÙÉè±äÁ¿a¡¢bºÍc¾ùΪÕûÐÍ£¬ÒÔÏÂÓï¾ä½èÖúÖмä±äÁ¿t°Ña¡¢bºÍcÖеÄÖµ½øÐн»»»£¬¼´°ÑbÖеÄÖµ¸øa£¬°ÑcÖеÄÖµ¸øb£¬°ÑaÖеÄÖµ¸øc¡£ÀýÈ磺½»»»Ç°a=10¡¢b=20¡¢c=30£¬½»»»ºóa=20£¬b=30,c=10¡£ÇëÌî¿Õ¡£
( );a=b;b=c;( ); ²Î¿¼´ð°¸£ºt=a c=t;
**3.42 Éèx¡¢yºÍz¶¼ÊÇintÐͱäÁ¿£¬mΪlongÐͱäÁ¿£¬ÔòÔÚ16λ΢ÐÍ»úÉÏÖ´ÐÐÏÂÃæ¸³
ÖµÓï¾äºó£¬yֵΪ£¨ £©£¬zֵΪ£¨ £©£¬mֵΪ£¨ £©¡£
y=(x=32767,x-1); z=m=oxffff;
²Î¿¼´ð°¸£º32766¡¢-1¡¢65535
3.43 ÈôxΪintÐͱäÁ¿£¬ÔòÖ´ÐÐÒÔÏÂÓï¾äºóxµÄֵΪ£¨ £©¡£
x=7;
x+=x-=x+x; ²Î¿¼´ð°¸£º-14
3.44 ÈôaºÍb¾ùΪintÐͱäÁ¿£¬ÔòÒÔÏÂÓï¾äµÄ¹¦ÄÜÊÇ£¨ £©¡£
a+=b;b=a-b;a-=b;
²Î¿¼´ð°¸£º½»»»a¡¢b±äÁ¿µÄÖµ *3.45 ÔÚscanfº¯Êýµ÷ÓÃÓï¾äÖУ¬¿ÉÒÔÔÚ¸ñʽ×Ö·ûºÍ%ºÅÖ®¼ä¼ÓÒ»ÐǺţ¬ËüµÄ×÷ÓÃÊÇ£¨ £©£¬µ±ÊäÈëÒÔÏÂÊý¾Ý£º10¡õ¡õ20¡õ¡õ30¡õ¡õ40
int a1,a2,a3;
scanf(\²Î¿¼´ð°¸£º¶ÁÈëÊý¾Ýºó²»¸³¸øÏàÓ¦µÄ±äÁ¿ °Ñ10¸øa1,°Ñ20²»¸øÈκαäÁ¿£¬°Ñ30¸øa2,°Ñ40¸øa3
3.46ÓÐÒ»ÊäÈ뺯Êýscanf(\Ôò²»ÄÜʹfloatÀàÐͱäÁ¿kµÃµ½ÕýÈ·ÊýÖµµÄÔÒòÊÇ£¨ £©ºÍ£¨ £©,ÕýÈ·µÄÓï¾äӦΪ£¨ £©¡£
²Î¿¼´ð°¸£º¸ñʽ×Ö·û²»ÕýÈ· ȱÉÙ&·ûºÅ scanf(\
3.47 ÒÑÓж¨Òåint a;float b,x;char c1,c2;Ϊʹa=3,b=6.5,x=12.6,c1='a',c2='A',ÕýÈ·µÄscanfº¯Êýµ÷ÓÃÓï¾äÊÇ£¨ £©£¬ÊäÈëÊý¾ÝµÄ·½Ê½Îª£¨ £©¡£ ²Î¿¼´ð°¸£º
scanf(\3¡õ6.5¡õ12.6aA
²Î¿¼·ÖÎö£º¸ÃÌâÄ¿²»ºÃ£¬¶ÁÈ¡Êý¾ÝÓï¾äºÍÌṩÊý¾Ý·½Ê½È«²¿ÓÉ×öÌâÕß¾ö¶¨£¬Õâ»á³öÏÖ¸÷ʽ¸÷ÑùµÄ´ð°¸¡£
*3.48 ÈôÓÐÒÔ϶¨ÒåºÍÓï¾ä£¬ÎªÊ¹±äÁ¿c1µÃµ½×Ö·û'A',±äÁ¿c2µÃµ½×Ö·û'B',ÕýÈ·µÄ¸ñʽÊäÈëÐÎʽÊÇ£¨ £©¡£
char c1,c2;
scanf(\²Î¿¼´ð°¸£ºA¡õ¡õ¡õB¡õ¡õ¡õ
²Î¿¼·ÖÎö£º¶ÁÈ¡×Ö·ûÊý¾ÝÖ¸¶¨Êý¾Ý¿í¶Èʱ£¬ÏµÍ³¶ÁÈ¡µÚÒ»¸ö×Ö·û
*3.49 Ö´ÐÐÒÔϳÌÐòʱ£¬Èô´ÓµÚÒ»ÁпªÊ¼ÊäÈëÊý¾Ý£¬ÎªÊ¹±äÁ¿a=3,b=7,x=8.5, y=71.82, c1='A',c2='a',ÕýÈ·µÄÊý¾ÝÊäÈëÐÎʽÊÇ£¨ £©¡£ int a,b;float x,y;char c1,c2; scanf(\scanf(\
scanf(\
²Î¿¼´ð°¸£ºa=3¡õb=7x=8.5¡õy=71.82c1=A¡õc2=a
*3.50 ÒÑÓж¨Òåint i,j;float x;Ϊ½«-10¸³¸øi,12¸³¸øj,410.34¸³¸øx£»Ôò¶ÔÓ¦ÒÔÏÂscanfº¯Êýµ÷ÓÃÓï¾äµÄÊý¾ÝÊäÈëÐÎʽÊÇ£¨ £©¡£
scanf(\²Î¿¼´ð°¸£º£12¡õc¡õ4.1034e2
²Î¿¼·ÖÎö£ºµÚÒ»¸öÊýÒ²¿É¸ø17776,µÚ¶þ¸öÊýÒ²¿É¸ø0xc,µÚÈý¸öÊýÒ²¿É¸ø410.34¡£
µÚËÄÕ Âß¼ÔËËãºÍÅжÏѡȡ¿ØÖÆ
4.1 Ñ¡ÔñÌâ
**4.1Âß¼ÔËËã·ûÁ½ÔòÔËËã¶ÔÏóµÄÊý¾ÝÀàÐÍ ¡£
A)Ö»ÄÜÊÇ0»ò1 B)Ö»ÄÜÊÇ0»ò·Ç0ÕýÊý C)Ö»ÄÜÊÇÕûÐÍ»ò×Ö·ûÐÍÊý¾Ý D)¿ÉÒÔÊÇÈκÎÀàÐ͵ÄÊý¾Ý ²Î¿¼´ð°¸£ºD ²Î¿¼·ÖÎö£ºcÓïÑÔÖÐûÓÐרÓõÄÂß¼Á¿£¬ÈκÎÊýÖµÀàÐ͵ÄÊý¾Ý¶¼¿ÉÒÔ×÷ΪÂß¼Êý¾ÝʹÓã¬ÅжÏʱ0Ϊ¼Ù£¬·ÇÁãÎªÕæ£¬¼ÆËãÊ±ÕæÖÃ1£¬¼ÙÖÃ0¡£ *4.2ÒÔϹØÓÚÔËËã·ûÓÅÏÈ˳ÐòµÄÃèÊöÖÐÕýÈ·µÄÊÇ
A)¹ØÏµÔËËã·û<ËãÊõÔËËã·û<¸³ÖµÔËËã·û<Âß¼ÔËËã·û B)Âß¼ÔËËã·û<¹ØÏµÔËËã·û<ËãÊõÔËËã·û<¸³ÖµÔËËã·û C)¸³ÖµÔËËã·û<Âß¼ÔËËã·û<¹ØÏµÔËËã·û<ËãÊõÔËËã·û D)ËãÊõÔËËã·û<¹ØÏµÔËËã·û<¸³ÖµÔËËã·û<Âß¼ÔËËã·û ²Î¿¼´ð°¸£ºC
4.3 ÏÂÁÐÔËËã·ûÖÐÓÅÏȼ¶×î¸ßµÄÊÇ ¡£
A)< B)+ C)&& D)!= ²Î¿¼´ð°¸£ºB
*4.4ÄÜÕýÈ·±íʾ¨Dµ±xµÄȡֵÔÚ[1,10]ºÍ[200,210]·¶Î§ÄÚÎªÕæ¡¬µÄCÓïÑÔ±í´ïʽΪ ¡£ A) (x>=1)&&(x<=10)&&(x>=200)&&(x<=210) B) (x>=1)&&(x<=10)||(x>=200)&&(x<=210) C) (x>=1)||(x<=10)||(x>=200)||(x<=210) D) (x>=1)||(x<=10)&&(x>=200)||(x<=210) ²Î¿¼´ð°¸£ºB
²Î¿¼·ÖÎö£ºCÓïÑÔÖÐʵ¼ÊÉÏÓëÔËËãºÍ»òÔËËãÓÅÏȼ¶ÏàµÈ£¬ÓÉÓÚC²ÉÓöÌ·Ëã·¨£¬ËùÒÔ²»»áÓ°ÏìBµÄ½á¹û,¼´²»ÐèÒª¸Ä³É((x>=1)&&(x<=10))||((x>=200) &&(x<=210)) 4.5 ±íʾͼÖÐ×ø±êÖáÉÏÒõÓ°²¿·ÖÕýÈ·µÄ±í´ïʽÊÇ ¡£ | | | a b c A)(x<=a)&&(x>=b)&&(x<=c) B)(x<=a)||(b<=x<=c) C)(x<=a)||(x>=b)&&(x<=c) D)(x<=a)&&(b<=x<=c) ²Î¿¼´ð°¸£ºC
4.6ÅжÏcharÐͱäÁ¿chÊÇ·ñΪ´óд×ÖĸµÄÕýÈ·±í´ïʽΪ ¡£
A)'A'<=ch<='Z' B)(ch>='A')&(ch<='Z') C) (ch>='A')&&(ch<='Z') D)('A'<=ch)AND('Z'>=ch) ²Î¿¼´ð°¸£ºC
4.7 ÓÐint x=3,y=4,z=5;ÔòÏÂÃæ±í´ïʽÖÐֵΪ0µÄÊÇ ¡£
A)'x'&&'y' B)x<=y C)x||y+z&&y-z D)!((x 4.8 ÒÑÖªx=43,ch='A',y=0;Ôò±í´ïʽ(x>=y&&ch<'B'&&!y)µÄÖµÊÇ ¡£ A)0 B)Óï·¨´íÎó C)1 D)\¼Ù\²Î¿¼´ð°¸£ºC 4.9ÈôÏ£Íûµ±AµÄÖµÎªÆæÊýʱ,±í´ïʽµÄֵΪ¨DÕæ¡¬,AµÄֵΪżÊýʱ,±í´ïʽµÄֵΪ¨D¼Ù¡¬¡£ÔòÒÔϲ»ÄÜÂú×ãÒªÇóµÄ±í´ïʽÊÇ ¡£ A)A%2= =1 B)!(A%2= =0) C)!(A%2) D)A%2