(函数的基本性质) 1.函数的单调性(局部性质) (1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: 1 任取x,x∈D,且x 2 作差f(x)-f(x); ○ 3 变形(通常是因式分解和配方); ○ 4 定号(即判断差f(x)-f(x)的正负); ○ 5 下结论(指出函数f(x)在给定的区间D上的单调性). ○ 1 2 1 2 1 2 1 2 (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 1首先确定函数的定义域,并判断其是否关于原点对○称; 9 2确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) ○ = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例:判断函数y??x3?1的单调性并证明你的结论. 另附:函数最大(小)值(定义见课本p36页) 1 利用二次函数的性质(配方法)求函数的最大(小)值 ○ 2 利用图象求函数的最大(小)值 ○ 3 利用函数单调性的判断函数的最大(小)值: ○ 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 4.几个基本初等函数 (幂函数) 1、幂函数定义:一般地,形如y?x?(a?R)的函数称为幂函数,其中?为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)??0时,幂函数的图象通过原点,并且在区间[0,??)上是增函数.特别地,当??1时,幂函数的图象下凸;当0???1时,幂函数的图象上凸; (3)??0时,幂函数的图象在区间(0,??)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于??时,图象在x轴上方无限地逼近x轴正半轴. 例:求下列函数的定义域和值域. (1)y?x (2)y?x 23?34 10 (指数函数及其图象) 1、指数函数的概念:一般地,函数y?ax(a?0,且a?1)叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.