《大地测量基础》复习题及参考答案
一、名词解释:
1、子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。 2、卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。 3、椭园偏心率:
第一偏心率 e?a2?b2第二偏心率e??aa2?b2 b4、大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的坐标系。 5、空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。
6、法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈。 7、相对法截线 :设在椭球面上任意取两点A和B,过A点的法线所作通过B点的法截线和过B点的法线所作通过A点的法截线,称为AB两点的相对法截线。
8、大地线:椭球面上两点之间的最短线。
9、垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正。
11、截面差改正:将法截弧方向化为大地线方向所加的改正。 12、起始方位角的归算:将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大地方位角。
13、大地元素:椭球面上点的大地经度、大地纬度,两点之间的大地线长度及其正、反大地方位角。
14、大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主题解算。
15、大地主题正算:已知P1点的大地坐标,P1至P2的大地线长及其大地方
1
10、标高差改正:由于照准点高度而引起的方向偏差改正。
位角,计算P2点的大地坐标和大地线在 P2点的反方位角。 16、大地主题反算:如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角。
17、地图投影: 将椭球面上各个元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。
18、高斯投影:横轴椭圆柱等角投影(假象有一个椭圆柱横套在地球椭球体外,并与某一条子午线相切,椭球柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定范围内的地区投影到椭圆柱上,再将此柱面展开成投影面)。
19、平面子午线收敛角:直角坐标纵轴及横轴分别与子午线和平行圈投影间的夹角。
20、方向改化:将大地线的投影曲线改化成其弦线所加的改正。
21、长度比:椭球面上某点的一微分元素与其投影面上的相应微分元素的比值。
22、参心坐标系:依据参考椭球所建立的坐标系(以参心为原点)。 23、地心坐标系:依据总参考椭球所建立的坐标系(以质心为原点)。 24、站心坐标系:以测站为原点,测站上的法线(垂线)为Z轴(指向天顶为正),子午线方向为x轴(向北为正),y轴与x,z轴垂直构成左手系。 25、垂线偏差:地面一点上的重力向量g和相应椭球面上法线向量n之间的 夹角定义为该点的垂线偏差。
26、大地水准面差距:大地水准面与椭球面在某点上的高差;当大地水准面 超过椭球面时N>0,当大地水准面低于椭球面时N<0。 27、正高:地面点沿实际重力线到大地水准面的距离。
28、正常高:地面点沿正常重力线到似大地水准面的距离。 29、大地高:地面点沿法线到椭球面的距离。
30、参考椭球:具有确定参数,经过局部定位和定向,同某一地区大地水准 面最佳拟合的地球椭球。
31、总地球椭球:除了满足地心定位和双平行条件外,在确定椭球参数时能 使它在全球范围内与大地体最密合的地球椭球。
32.岁差:地球绕地抽旋转,可以看做巨大的陀螺旋转,由日、月等天体的影响,类似于旋转陀螺在重力场中的运动,地球的旋转轴在空间围绕黄极发
2
生缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角ε=23.5°,旋转周期为26000年,这种运动称为岁差。是地轴方向相对于空间的长周期运动。 33.章动:月球绕地球旋转的轨道称为白道,由于白道对于黄道有约5°的倾斜,这使得月球引力产生转矩的大小和方向不断变化,从而导致地球旋转轴在岁差的基础上叠加18.6年的短周期圆周运动,振幅为9.21″,这种现象称为章动。
34.极动:地球自转轴除了上述空间的变化外,还存在相对于地球体自身内部的相对位置的变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极动。
35.时间间隔:是两个时刻点之间的差值,指某一现象的持续时间的长短。 36.时刻:是时间轴上的坐标点,是相对时间轴的原点而言的,是指发生某一现象的瞬间。 37.
二、填空题:
1、 旋转椭球的形状和大小是由子午椭园的 5 个基本几何参数来决定的,它们分别是长半轴、短半轴、扁率、第一偏心率、第二偏心率 。 2、决定旋转椭球的形状和大小,只需知道 5 个参数中的 2 个参数就够了,但其中至少有一个 长度元素 。
3、传统大地测量利用天文大地测量和重力测量资料推算地球椭球的几何参数,我国1954年北京坐标系应用是 克拉索夫斯基 椭球,1980年国家大地坐标系应用的是 75国际椭球(1975年国际大地测量协会推荐) 椭球,而全球定位系统(GPS)应用的是 WGS-84(17届国际大地测量与地球物理联合会推荐) 椭球。
4、两个互相垂直的法截弧的曲率半径,在微分几何中统称为主曲率半径,它们是指 M 和 N 。
5、椭球面上任意一点的平均曲率半径R等于该点 子午曲率半径 M和 卯酉曲率半径 N的几何平均值。
6、椭球面上子午线弧长计算公式推导中,从赤道开始到任意纬度B的平行圈之间的弧长表示为:X=?0MdB?a(1?e2)[A?sin2B??
BBB2Csin4B???] 43
7、平行圈弧公式表示为:r= x=NcosB=
acosB(1?esinB)2212
8、克莱洛定理(克莱洛方程)表达式为 lnsinA+lnr=lnC(r*inA=C) 9、某一大地线常数等于椭球半径与该大地线穿越赤道时的 大地方位角的正弦乘积或者等于该点大地线上具有最大纬度的那一点的平行圈半径。 10、拉普拉斯方程的表达式为A???(??L)sin?。
11、投影变形一般分为 角度变形 、 长度变形 和 面积 变形。 12、地图投影中有 等角投影 、 等距投影 和 等面积 投影等。 13、高斯投影是 横轴椭圆柱等角投影,保证了投影的 角度 的不变性,图形的 相似形 性,以及在某点各方向上的 长度比 的同一性。 14、采用分带投影,既限制了 长度变形 ,又保证了在不同投影带中采用相同的简便公式进行由于 变形 引起的各项改正数的计算。 15、椭球面到平面的正形投影的一般公式表达为:16、由平面到椭球面正形投影一般条件表达式为:
?y?x?y?x?,?? ?q?l?l?q?q?l?l?q?,?? ?x?y?x?y17、由于高斯投影是按带投影的,在各投影带内 经差l 不大, l/p 是一微小量。故可将函数x?x(l,q),y?y(l,q)展开为 经差l 的幂级数。 18、由于高斯投影区域不大,其中 y 值和椭球半径相比也很小,因此可将
(l,q)展开为 y 的幂级数。
19、高斯投影正算公式是在中央子午线P'点展开 l 的幂级数,
高斯投影反算公式是在中央子午线P\点展开 y 的幂级数。 20、一个三角形的三内角的角度改正值之和应等于该三角形的 球面角超的负值 。
21、长度比只与点的 位置 有关,而与点的 方向 无关。 当m0=0.9996时,称为 横轴墨卡托投影(UTM投影) 。 23、写出工程测量中几种可能采用的直角坐标系名称(写出其中三种): 国家3度带高斯正形投影平面直角坐标系 、 抵偿投影面的3度带高斯
4
22、高斯—克吕格投影类中,当m0=1时,称为 高斯-克吕格投影 ,
正形投影平面直角坐标系 、 任意带高斯正形投影平面直角坐标系 。 24、所谓建立大地坐标系,就是指确定椭球的 形状与大小 , 椭球中心 以及 椭球坐标轴的方向(定向) 。
25、椭球定位可分为 局部定位 和 地心定位 。
26、参考椭球的定位和定向,就是依据一定的条件,将具有确定参数的椭球与 地球的相关位置 确定下来。
27、参考椭球的定位和定向,应选择六个独立参数,即表示参考椭球定位的三个 平移 参数和表示参考椭球定向的三个 绕坐标轴的旋转 参数。 28、参考椭球定位与定向的方法可分为两种,即 一点定位 和 多点定位 。
29、参心大地坐标建立的标志是 参考椭球参数和大地原点上的其算数据的确立。
30、不同大地坐标系的换算,包含9个参数,它们分别是 三个平移参数 、 三个旋转参数 、 一个尺度参数 和 两个地球椭球元素变化参数 。 31、三角网中的条件方程式,一类是与起算数据无关的,称为 独立网 条件,包括 图形条件 、 水平条件 和 极条件 。
32、三角网中的条件方程式,一类是与起算数据有关的,称为 起算数据条件或强制符合条件 条件,包括 方位角(固定角) 、 基线(固定边) 及 纵横坐标条件 。
33、大地经度为120°09′的点,位于6°带的第 21 带,其中央子午线经度为 123 。
34、大地经度为132°25′的点,位于6°带的第 23 带,其中央子午线经度为 135 。
35、大地线方向归算到弦线方向时,顺时针为 正 ,逆时针为 负 。 36、地面上所有水平方向的观测值均以 垂线 为依据,而在椭球上则要求以该点的 法线 为依据。
37、高斯平面子午线收敛角由子午线投影曲线量至纵坐标线,顺时针为 正 ,逆时针为 负 。
38、天文方位角?是以测站的 垂线 为依据的。
5
三、选择与判断题:
1、包含椭球面一点的法线,可以作 2 法截面,不同方向的法截弧的曲率半径 4 。
①唯一一个 ② 多个
③相同 ④不同
2、子午法截弧是 2 方向,其方位角为 4 。
①东西 ②南北 ③任意 ④00或1800 ⑤900或2700 ⑥任意角度 3、卯西法截弧是 1 方向,其方位角为 5 。
①东西 ②南北 ③任意 ④00或1800 ⑤900或2700 ⑥任意角度
4、任意法截弧的曲半径RA不仅与点的纬度B有关,而且还与过该点的法截弧的 3 有关。
①经度l ②坐标X,Y ③方位角A 5、主曲率半径M是任意法截弧曲率半径RA的 2 。
①极大值 ②极小值 ③平均值
6、主曲率半径N是任意法截弧曲率半径RA的 1 。 ①极大值 ②极小值 ③平均值
7、M、R、 N三个曲率半径间的关系可表示为 1 。
①N >R >M ②R >M >N ③M >R >N ④R >N >M
8、单位纬差的子午线弧长随纬度升高而 2 ,单位经差的平行圈弧长则随纬度升高而 1 。
①缩小 ②增长 ③相等 ④不变
9、某点纬度愈高,其法线与椭球短轴的交点愈 2 ,即法截线偏 3 。
①高 ②低 ③上 ④下 10、垂线偏差改正的数值主要与 1 和 3 有关。 ①测站点的垂线偏差 ②照准点的高程
6
③观测方向天顶距 ④测站点到照准点距离 11、标高差改正的数值主要与 2 有关。 ①测站点的垂线偏差 ②照准点的高程
③观测方向天顶距 ④测站点到照准点距离 12、截面差改正数值主要与 4 有关。 ①测站点的垂线偏差 ②照准点的高程
③观测方向天顶距 ④测站点到照准点距离 13、方向改正中,三等和四等三角测量 4 。
① 不加截面差改正,应加入垂线偏差改正和标高差改正; ② 不加垂线偏差改正和截面差改正,应加入标高差改正; ③ 应加入三差改正; ④不加三差改正; 14、方向改正中,一等三角测量 3 。
① 不加截面差改正,应加入垂线偏差改正和标高差改正; ② 不加垂线偏差改正和截面差改正,应加入标高差改正; ③ 应加入三差改正; ④不加三差改正; 15、地图投影问题也就是 1 。 ①建立椭球面元素与投影面相对应元素间的解析关系式 ②建立大地水准面与参考椭球面相应元素的解析关系式 ③建立大地坐标与空间坐标间的转换关系 16、方向改化 2 。 ① 只适用于一、二等三角测量加入 ② 在一、二、三、四等三角测量中均加入 ③只在三、四等三角测量中加入
17、设两点间大地线长度为S,在高斯平面上投影长度为s,平面上两点间直线长度为D,则 1 。
①SD ②sD ③s
18、长度比只与点的 2 有关,而与点的 1 无关。
①方向 ②位置 ③长度变形 ④距离 19、我国采用的1954年北京坐标系应用的是 2 。
7
①1975年国际椭球参数 ②克拉索夫斯基椭球参数 ③WGS-84椭球参数 ④贝塞尔椭球参数 20、我国采用的1980图家大地坐标系应用的是 1 。 ①1975年国际椭球参数 ②克拉索夫斯基椭球参数 ③WGS-84椭球参数 ④贝塞尔椭球参数 21、子午圈曲率半径M等于 3 。
a(1?e2)rc①M? ② ③ ④M?N M?M?3W3cosBV22、椭球面上任意一点的平均曲率半径R等于 4 。
a1?e2N①N? ② ③ ④R?MN R?M?R?NW2V23、子午圈是大地线( 对 )。
24、不同大地坐标系间的变换包含7个参数( 错 )。 25、平行圈是大地线( 错 )。
26、定向角就是测站上起始方向的方位角( 对 )。
27、高斯投影中的3度带中央子午线一定是6度带中央子午线,而6度带中央子午线不一定是3度带中央子午线( 错 )。
28、高斯投影中的6度带中央子午线一定是3度带中央子午线,而3度带中央子午线不一定是6度带中央子午线( 对 )。 29、控制测量外业的基准面是 4 。
①大地水准面 ②参考椭球面 ③法截面 ④水准面 30、控制测量计算的基准面是 2 。
①大地水准面 ②参考椭球面 ③法截面 ④高斯投影面 31、同一点曲率半径最长的是( 2 )。
①子午线曲率半径 ②卯酉圈曲率半径 ③平均曲率半径 ④方位角为450的法截线曲率半径
32、我国采用的高程系是( 3 )。 ①正高高程系 ②近似正高高程系 ③正常高高程系 ④动高高程系
8
四、问答题:
1、 大地坐标系是大地测量的基本坐标系,其优点表现在什么方面?
要点:以旋转椭球体建立的大地坐标系,由于旋转椭球体是一个规则的数学曲面,可以进行严密的数学计算,而且所推算的元素(长度、角度)同大地水准面上的相应元素非常接近。 2、什么是大地线?简述大地线的性质。
要点:椭球面上两点间的最短程曲线叫做大地线。
大地线是一条空间曲面曲线;大地线是两点间唯一最短线,而且位于相对法截线之间,并靠近正法截线,与正法截线间的夹角为???;大地线与法截线长度之差只有百万分之一毫米,所以在实际计算中,这样的差异可以忽略不计;在椭球面上进行量测计算时,应当以两点间的大地线为依据。在地面上测得的距离,方向等,应当归化到相应的大地线的方向和距离 。
何为大地线微分方程?写出其表达形式。
所谓大地线微分方程,是指表达dL,dB,dA各与dS的关系式。
cosAdS MsinAdL?dS
NcosBsinAdA?tgBdS
NdB?133、 简述三角测量中,各等级三角测量应如何加入三差改正?
要点:在一般情况下,一等三角测量应加入三差改正,二等三角测量应加垂线偏差改正和标高改正,而不加截面差改正;三等三角测量可不加三差改正,但当????10??时或H?2000m时,则应加垂线偏差改正和标高改正,这就是说,在特殊情况下,应该根据测区的实际情况作具体分析,然后再作出加还是不加入改正的规定。
4、 简述大地主题解算直接解法的基本思想。
要点: 直接解算极三角形P1NP2。比如正算问题时,已知数据是边长S,P1N及角A12,有三角形解算可得到另外的元素l,β及P2N,进而求得未知量
9
?L2?L1?l,B2?90?P2N,A21?3600??
0常用的直接解法是白塞尔解法。
5、 简述大地主题解算间接解法的基本思想。
要点:根据大地线微分方程,解出经度差dl,纬度差dB及方位角之差dA
dB?B2?B1??1(B1,L1,A12,S)??dL?L2?L1??2(B1,L1,A12,S)? dA?A21?A12??3(B1,L1,A12,S)??再求出未知量
B2?B1?dB,L2?L1?dL,A21?A12?1800?dA
常用的间接解法有高斯平均引数公式。 6、 简述高斯平均引数公式的优点。
要点:基本思想是首先把勒让德尔级数在P1点展开改在大地线长度中点M展开,以使级数公式项数减少,收敛快,精度高;其次考虑到求解中点M的复杂性,将M点用大地线两端点平均方位角相对应的m点来代替,并借助迭代计算,便可顺利地实现大地主题正算。 7、 试述控制测量对地图投影的基本要求。
要点:首先应当采用等角投影;
其次,在所采用的正形投影中,还要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。
最后,要求投影能够方便的按照分带进行,并能按高精度的、简单的、同样的计算公式和用表把各带连成整体。 8、 什么是高斯投影?为何采用分带投影?
要点:高斯投影又称横轴椭圆柱等角投影。它是想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭圆柱体中心,然后用一定投影方式,将中央子午线两侧各一定经度范围内的地区投影到椭球柱面上,再将此柱面展开即成为投影面。
10
由于采用了同样法则的分带投影,这既限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行由于变形引起的各项改正的计算,并且带与带间的互相换算也能采用相同的公式和方法进行。 9、 简述正形投影区别于其它投影的特殊性质。
要点:在正形投影中,长度比与方向无关,这就成为推倒正形投影一般条件的基本出发点。
10、 叙述高斯投影正算公式中应满足的三个条件。
要点:中央子午线投影后为直线;中央子午线投影后长度不变;投影具有正形性质,即正形投影条件。
11、 叙述高斯投影反算公式中应满足的三个条件。
要点:x坐标轴投影成中央子午线,是投影的对称轴;x轴上的长度投影保持不变;正形投影条件,即高斯面上的角度投影到椭球面上后角度没有变形,仍然相等。
12、 试述高斯投影正、反算间接换带的基本思路。
要点:这种方法的实质是把椭球面上的大地坐标作为过度坐标。首先把某投影带内有关点的平面坐标(x,y)1利用高斯投影反算公式换算成椭球面上的大地坐标(B,l),进而得到L=L0+l,然后再由大地坐标(B,l),利用投影正算公式换算成相邻带的平面坐标(x,y)2在计算时,要根据第2带的中央子午线来计算经差l,亦即此时l=L-L0。
13、 试述工程测量中投影面和投影带选择的基本出发点。
要点:1)在满足工程测量精度要求的前提下,为使得测量结果得一测多用,这时应采用国家统一3度带高斯平面直角坐标系,将观测结果归算至参考椭球面上。2)当边长的两次归算投影改正不能满足要求时,为保证工程测量结果的直接利用和计算的方便,可以采用任意带的独立高斯投影平面直角坐标系,归算结果可以自己选定。可以采用抵偿投影面的高斯正形投影;任意带高斯正形投影;具有高程抵偿面的任意带高斯正形投影。 14、 控制测量概算的主要目的是什么?
要点:1)系统地检查外业成果质量,把好质量关;2)将地面上观测成果归算到高斯平面上,为平差计算作好数据准备工作;3)计算各控制点
11
的资用坐标,为其它急需提供未经平差的控制测量基础数据。 15、 简述椭球定向的平行条件和目的。
要点:平行条件:椭球短轴平行于地球自转轴;大地起始子午面平行于天文起始子午面。目的在于简化大地坐标、大地方位角同天文坐标、天文方位角之间的换算。 16、大地测量学研究内容
(1)研究建立和维持高科技水平的工程和国家水平控制网和精密水准网 的原理和方法,以满足国民经济和国防建设以及地学科学研究的需要。(2) 研究获得高精度测量成果的精密仪器和科学的使用方法。(3)研究地球表面 测量成果向椭球及平面的数学投影变换及有关问题的测量计算。(4)研究高 精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法、控制 测量数据库的建立及应用等。
17、三角网、导线网各自观测量及优缺点
三角网:观测网中的全部或大部分方向值和部分边长
优点:图形简单,网的精度较高,有较多检核条件,易于发现观测中的 粗差,便于计算。
缺点:在平原地区或隐蔽地区易受障碍物的影响,布网困难大,有时不 得不建造高觇标
导线网:观测角度和边长 优点:(1)网中各点上的方向数较少,除节点外只有两个方向,因而受 通视要求限制较小,易于选点和降低觇标高度,甚至无须造标。(2)导线网 的图形非常灵活,选点时可根据具体情况随时改变。(3)网中边长都是直接 测定的,因此边长精度较均匀。
缺点:导线网中的多余观测数较同样规模的三角网要少,有时不易发现 观测值中的粗差,因而可靠性不高。 18、工程测量水平控制网的布设原则 (1)分级布网,逐级控制 (2)要有足够的精度 (3)要有足够的密度 (4)要有统一的规格 19、精密测角的一般原则
(1)观测应在目标成像清晰、稳定有利于观测时间进行,以提高照准精 度和减小旁折光的影响;(2)观测前应认真调好焦距,消除视差;(3)配置 度盘;(4)上下半测回照准目标次序应相反,并使观测每一目标的操作时间
12
大致相同;(5)为了克服或减弱在操作仪器的过程中带动水平度盘位移的误 差,要求每半测回开始观测前,照准部按规定方向先预转1-2周;(6)使用 照准部微动螺旋和测微螺旋时,其最后旋转方向应为旋进;(7)观测过程中 应保持照准部水准器气泡居中,若气泡偏离水准器中央一格时,应在测回间 重新整平仪器。
20、方向观测法一测站观测程序
(1)设在测站上有1,2,3,……,n个方向要观测,首先应选定边长适 中、通视良好、成像清晰稳定的方向作为观测的起始方向。
(2)上半测回用盘左位置先照准零方向,然后按顺时针方向转动照准部 依次照准方向2,3,……,n再闭合到方向1,并分别在水平度盘上读数。 (3)下半测回用盘右位置,仍然先照准零方向1,然后按逆时针方向转动 照准部依相反的次序照准方向n,……,3,2,1,并分别在水平度盘上读数。 21、电子经纬仪按测角原理分类:光栅度盘和编码读盘
22、T2,T3经纬仪配置度盘的方法,计算竖直角及指标差公式 T2 s=180/n+10 T3 s=180/n+4
T2 α左=90-L+i ,α右=R-270-i,i=(L+R-360)/2 T3 α左=2(L-90)-i ,α右=2(90-R)+i,i=L+R-180
23、用于测距的电磁波种类按测距方法不同测距仪分类:脉冲式和相位式 24、相位法测距仪确定N值的方法 25、精密水准测量的一般原则
1、仪器距前、后视水准标尺的距离应尽量相等,其差应小于规定的限 值;2、在相邻两测站上,应按奇、偶数测站的观测程序进行观测,对于往 返奇数测站按后前前后、偶数测站按前后后前的观测程序在相邻测站上交替进行;3、每一段的往测与返测,其测站数均应为偶数;4、每一测段的水准测量路线应进行往测和返测;5、一个测段的水准测量路线的往测和返测应在不同的气象条件下进行;6、同一测站上观测时,不得两次调焦;转动仪器的倾斜螺旋和测微螺旋,其最后旋转方向均应为旋进;7、水准测量的观测工作间歇时,最好能结束在固定的水准点上。 26、精密水准测量测站观测程序:
往测时,奇数测站照准水准标尺分划的顺序为: 后视标尺的基本分划 前视标尺的基本分划 前视标尺的辅助分划 后视标尺的辅助分划
13
往测时,偶数测站照准水准标尺分划的顺序为:
前视标尺的基本分划
后视标尺的基本分划 后视标尺的辅助分划 前视标尺的辅助分划
返测时,奇、偶数测站照准标尺的顺序分别与往测偶、奇数测站相同。 27、精密水准仪测微器工作原理,计算视线高的方法。
(1)平行玻璃板安装在物镜前,它与测微尺之间用带有齿条的传动杆 连接,当转动测微器手轮时,平行玻璃板绕其旋转轴作俯仰,传动杆拉动测微尺前后移动;
(2)当平行玻璃板与水平视线正交时,测微尺上指标分划线指在中央 读数5mm处,此时水平视线在标尺上不一定正好指在整cm分划线的读数处;
(3)转动测微器手轮,牵引平行玻璃板倾动,视线经过倾斜的平行玻 璃板时产生上(下)平移,可以使原来并不对准标尺上整cm分划的视线,精确对准某一整cm分划,从而读到一个整分划读数;
(4)同时平行玻璃板倾斜时,传动杆拉动测微尺前后移动,使视线在 尺上的平行移动量由测微尺记录下来,测微尺的读数通过光路成像在测微尺读数窗内。
28、i角检验方法计算公式。
29、三角高程测量高差的计算公式。
五、论述与计算题:
1、说明大地纬度、归化纬度、等量纬度、底点纬度的含义,它们各有什么用途。
2、为缩小实地距离与高斯平面上相应距离之差异,应如何根据不同情况选择城市控制网相应的计算之基准面以及高斯平面直角坐标系。
3、高斯投影应满足哪些条件?椭球面上的观测值化算为高斯平面上的观测值需经过哪些改正?写出计算公式。
4、正投影的本质特征是什么?试推导高斯投影长度比的计算公式,并依据该公式说明高斯投影变形的特性。
高斯投影公式为:x?X?N2*sinB*cosB*l2
14
y?N*cosB*l?N*(cosB)3*(1?t2??2)*l3 65、试简述将地面测量控制网归化到高斯投影面上的主要工作内容。 6、简述控制测量的发展趋势。 7、简述大地测量仪器的发展动态。
《大地测量基础》作业题与复习思考题
第一章 绪论
1、什么叫大地测量学?它与普通测量学有什么不同? 2、大地测量学的任务和研究的内容有哪些?
第二章 大地测量基础知识
1、天球坐标系中,已知某卫星的r=26600000m,α=45°,δ=45°。求该卫星的天球直角坐标X,Y,Z。
2、测站P对某卫星测得其r=21000000m, A= 45°, h=45°。求该卫星的站心地平直角坐标x,y,z。
3、垂直角测量中,地面点P对目标点Q观测的垂直角为0°,如图所示。水平距离PQ=1000m。设地球半径OP=OC=R=6378000m,计算Q点对P点的高差h=QC=?球面距离PC=?(提示:P点、C点在球面上为等高,弧长PC=Rθ)
15
P C Q R O
θ
4、已知A点正常高和各测段水准高差,计算B点的正常高。
A◎----------1○----------○2------------◎B
A点正常高HA=1000m,各测段高差分别为:h1=21.123m、h2=20.014m、h3=19.762m,各测段路线长分别为:3km、2km、3km,各点纬度分别为:φa=33°50′、φ1=33°48′、φ2=33°47′、φb=33°45′。
(提示:先计算各测段高差的水准面不行改正及重力异常改正,再计算B点高程。由平均纬度计算得系数A=0.00000142335,无重力异常资料)
5、GPS卫星绕地球一周的时间为11小时58分(平太阳时), 计算相应的恒星时=?
6、北京时间7时30分对应的世界时=?
7、地的经度L=117°, 求该点平太阳时与北京时之差=?
8、两地经度之差为30°, 求两地平太阳时之差、两地恒星时之差各为多少?
9、名词定义:水准面、大地水准面、参考椭球面、总地球椭球、垂线偏差、大地水准面差距?
10、常用大地测量坐标系统有哪些?
11、名词定义:恒星时、平太阳时、世界时、区时、原子时、GPS时间系统?
12、水准面不平行性对水准测量成果产生什么影响?
13、什么是正高、正常高、大地高?绘图说明它们之间的关系。
第三章 大地测量控制网的建立
1、国家平面控制网、国家高程控制网建立的原则、测量方法和技术规
16
格。
2、2000国家GPS网和2000国家重力基准网的基本规格。 3、工程控制网的种类、布设原则、布设方案。 4、工程平面控制网技术设计的步骤,精度估算的意义。 5、工程高程控制网的布设方案与精度估算。
6、什么是GPS网的基准设计、网形设计和观测纲要设计?
7、按给定的具体要求(已知点、新设计点、精度要求、现有接收机设备等)设计工程控制网(测图控制网或工程施工控制网)。
8、应用MATLAB矩阵运算方法对设计的某一控制网进行精度估算。(组成误差方程式或条件方程式系数矩阵B、观测职权阵P、组成法方程式系数矩阵N、法方程矩阵求逆得未知数的权倒数Q、最后根据单位权中误差σ和权倒数Q计算未知数的中误差M。
9、某矿区面积约100平方千米,需进行1:1000地形测图,如果首级控制网按四等GPS网布设,控制网的点数大约要多少个?
10、在四等控制点的基础上布设二级单一等边直伸附合导线(总长度2km,平均边长200m,测距中误差为15mm,测角中误差为8秒),不考虑起算数据误差,估算导线最弱点位置中误差。
11、某隧道内按二级等边直伸支导线布设平面控制网,布设有5条导线边时,导线总长为5×200=1000m,测距中误差为15mm,测角中误差为8秒),不考虑起算数据误差,估算导线最弱点中误差。
12、单一四等附合(或闭合)水准高程网最弱点高程误差估算(不考虑起算点误差)。(路线总长为16km,每2km布设一个水准点,共布设7个水准点,最弱点为4号点)。
13、某隧道内按二等支水准路线布设高程控制网,设计路线总长为8km,每2km布设一个水准点,共布设4个水准点,最弱点为4号点。不考虑起算点高程误差,估算最弱点的高程中误差。
第四章 大地测量观测技术
17
1、水平角和垂直角测量误差来源和减弱的措施有哪些? 2、方向观测操作程序和规则有哪些? 3、 水平角和垂直角观测有哪些限差? 4、 光电测距误差种类和性质。 5、 光电测距斜距本身要加哪些改正?
6、 会进行将斜距化至椭球面再化至高斯平面的计算。
7、 什么叫水准路线、水准仪i角误差、一对标尺零点差、基辅分划读数差、每千米往返测高差中数的偶然中误差和全中误差?
8、 二、三、四等水准测量观测程序和限差。 9、 二等水准概算主要内容有哪些? 10、电磁波测距三角高程高差的计算公式。 11、GPS系统有哪几部分组成?各部分的作用是什么? 12、什么叫GPS绝对定位和相对定位? 13、导线水平方向观测记簿与计算
测站点:D02 仪器:DJ2 日期:2010.3.15 方向 号数 与点名 ° ′ 1D01 0 00 盘 左 ″ 26 25 05 05 90 00 52 51 22 22 ″ ° ′ 180 00 读 数 盘 右 ″ 21 20 01 00 46 46 19 20 ″ 左-右 2c ″ 左+右 2 ″ 0 00 00.0 方向值 ° ′ ″ 附注 2D03 175 16 355 16 1D01 270 00 0 00 00.0 2D03 265 16 85 16 14、 垂直角观测记录与计算(中丝法) 测站点:D02 仪器:DJ2 日期:2010.3.15 照准点名 盘 左 盘 右 指标差 垂 直 角 18
照准部位 ° ′ ″ ″ ° ′ ″ 269 53 36 38 269 53 37 38 271 43 58 58 271 43 57 57 ″ ′ ″ ° ′ ″ D01 90 06 27 反射镜照准26 标志板中心 90 06 28 27 D03 88 16 08 反射镜照准08 标志板中心 88 16 06 05 15、距离化算:用DI-20测距仪测得控制点双山至松山的距离观测值D0=5729.762m,
测站气温 t=21.9℃,气压 p=745.5mmhg, 仪器高 i双=1.190m, 高程 H双=97.461m;
镜站气温 t=22.3℃,气压 p=750.5mmhg, 仪器高 i松=1.591m, 高程 H松=57.462m;
测距仪加常数△D0=-4.3mm, 乘常数为 0, 精测频率 f=4495620HZ, 实际检定频率 f=4495635HZ, 周期误差小于固定误差的1/2, 没有偏心观测;
对于1954年北京坐标系参考椭球:高斯平面坐标y
双=16.24km,
y
松
=20.80km, 地球平均半径R=6370341m。1.求改正后的斜距d; 2.斜距化算至椭球面S; 3.化算至高斯平面边长D。
提示:计算气象改正先将测站与镜站气象参数取平均值,计算中mmhg化为mb时应除以0.75006;计算两点高差以及高程平均值应顾及仪器高。
16、计算一测站水准观测数据,判别是否合乎限差
测自 徐宁I 03 至 徐矿II 01 仪器:DS1 日期:2010年3月15日
后 测 站 编 号 后距 视距差d (1) (2) (9) (11) 1
1328 尺 下丝 下前 尺 丝 上丝 前距 累积差 Σd (5) (6) (10) (12) 1345 后 前 后-前 h中 后19 方 尺 及 向 号 基本分划 (一次) (3) (4) (15) 126.049 辅助分划 (二次) (8) (7) (16) 427.635 (14) (13) (17) (18) -36 19
标尺读数 基+K 减辅 (一减二) 备注 上丝 1181 1195 前20 后-前 h中 127.403 -1354 428.970 -1335 -17 -19 第五章 地球椭球与测量计算
1、名词定义:地球椭球、椭球定位、法截线、子午圈、卯酉圈、相对法截线、大地线、垂线偏差改正、标高差改正、截面差改正、大地问题正解、大地问题反解。
2、写出N、M、R及子午圈弧长、平行圈弧长的计算公式,说明式中符号的意义。
3、大地线微分方程的意义。
4、地面观测值(方向、距离)归算至椭球面应加哪些改正? 5、参考椭球定位的意义是什么?
6、椭球面上的大地问题解算主要内容有哪些?
7、对于克氏椭球,已知图幅I-50-67中A、B点的大地纬度B=34°20′、34°,求相应的M、N、R。
8、对于克氏椭球,计算图幅I-50-67图廓长度。
34°20′
A B I-50-6D 117
°
C 34°00′
117°00′
9、地面观测方向值、地面观测距离值化算至某一椭球面的计算。(方向值的化算包括垂线偏差、标高差、截面差改正计算,距离花色包括空间直线化算至椭球面弦长、再化算至椭球面弧长的计算)
第六章 高斯投影及其计算
1、高斯正形投影的特性有哪些?
2、椭球面上三角网归算到高斯平面上计算内容有哪些? 3、说明长度比、长度变形、距离改正的意义? 4、不同投影带坐标换算的方法步骤。
20
5、高斯投影坐标正、反算、平面子午线收敛角、方向改正、距离改正的计算公式中各符号的意义。
6、已知某点BJ54大地坐标B=32°24′57.6522″、L=118°54′15.2206″,计算中央子午线为117°时的高斯平面坐标X=?Y=?
7、用间接换带法进行坐标换带计算。已知P点在3带第41带(L0=123)的高斯平面坐标X1=3589644.287m,Y=179136.439m。求P点在3带第42带(L0=126)的高斯平面坐标X2=?Y2=?
8、椭球面上的起算元素(P1点的大地坐标B、L,P1至P2的球面边长S和大地方位角A12)化算至高斯平面(L0)的方法步骤。
第七章 大地测量坐标系统的转换
1、我国目前采用的大地坐标系有哪些?
2、同一大地坐标系统中大地坐标与三维直角坐标之间的关系。 3、不同大地坐标系统坐标转换(主要学会三维直角坐标之间的三参数法、七参数法)。
4、不同平面直角坐标系之间的转换(四参数法)。 5、矿区局部坐标系统的建立方法有哪几种? 6、什么是GPS水准高程?
7、(1) 表7-1中,如果只有1号点为公共点,求坐标转换参数,并将其余2,3,4号点的X1,Y1,Z1转换为X2,Y2,Z2。(提示:三参数法)
(2) 表7-1中,如果有1,2号点为公共点,求坐标转换参数,并将1,2,3,4号点的X1,Y1,Z1转换为X2,Y2,Z2。(提示:按7-10式七参数法,保留三个平移、三个旋转角共六个参数转换。)
(3) 表7-1中,如果有1,2,3号点为公共点,求坐标转换参数,并将1,2,3,4号点的X1,Y1,Z1转换为X2,Y2,Z2。(提示:按7-10式七参数法。或保留三个平移、三个旋转角共六个参数按7-11式进行转换。)
8、表7-2中,选取1,2两个点作为公共点,求坐标转换参数,然后将3,4两点的X2,Y2转换为X1,Y1。
21
9、某矿区范围为东经117°15′~117°30′,,北纬33°30′~33°45′,测区内地面高程最高为300m。井下高程为-800m。为测图方便是否需要选择独立坐标系?如何选择?
大地测量学总复习
第一章
1. 大地测量学的定义,和经典大地测量学有什么区别?
答:大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星的一门学科。
和经典大地测量学的区别:首先,现代大地测量学的测量范围大,它可在国家、国际、洲际、海洋及陆上、全球乃至月球及太阳行星际等广大宇宙空间进行。第二,现代大地测量学已经从静态测量发展到了动态测量,从地球表面测绘发展到深入地球内部构造及动力过程的研究,及研究对象和范围不断地深入、全面和精细。第三,观测的精度高。
第二章
1.地球的运转的分类:
22
(1)与银河系一起在宇宙中运动。 (2)在银河系内与太阳系一起旋转。
(3)与其他行星一起绕太阳旋转(公转或周年视运动)。 (4)绕其瞬时旋转轴旋转(自转或周日视运动)。 其中(3)和(4)是大地测量学需要研究的。 2.
23