二进制的四则运算

图2-13 二进制数乘、除法计算示例 乘法运算示例?

先看图2-13(a)所示的二进制数乘法运算,其实很简单,我们只要把二进制数中的“0”和“1”全部当成是十进制数中的“0”和“1”即可。根据十进制数中的乘法运算知道,任何数与“0”相乘所得的积均为“0”,这一点同样适用于二进制数的乘法运算。只有“1”与“1”相乘才等于“1”。有了这样两个原则就很容易理解图2-13(a)所示的乘法运算步骤了。下面是具体介绍。

(1)首先是乘数的最低位与被乘数的所有位相乘,因为乘数的最低位为“0”,根据以上原则可以得出,它与被乘数(1110)2的所有位相乘后的结果都为“0”。

(2)再是乘数的倒数第二位与被乘数的所有位相乘,因为乘数的这一位为“1”,根据以上原则可以得出,它与被乘数(1110)2的高三位相乘后的结果都为“1”,而于最低位相乘后的结果为“0”。

(3)再是乘数的倒数第三位与被乘数的所有位相乘,同样因为乘数的这一位为“1”,处理方法与结果都与上一步的倒数第二位一样,不再赘述。

(4)最后是乘数的最高位与被乘数的所有位相乘,因为乘数的这一位为“0”,所以与被乘数(1110)2的所有位相乘后的结果都为“0”。

(5)然后再按照前面介绍的二进制数加法原则对以上四步所得的结果按位相加(与十进制数的乘法运算方法一样),结果得到(1110)2×(0110)2=(1010100)2。 除法运算步骤?

最后看一下图2-13(b)所示的二进制数除法运算。它也与十进制数的除法运算方法一样,但它的商只能是“0”或“1”。在除法运算中还要用到前面介绍的二进制数减法运算方法。具体步骤如下。

说明:因为除数为“110”,有3位,所以在被除数中也至少要有3位(从高位数起)。被除数的高3位为“100”,比除数“110”小,所以要选到前4位(这与十进制数的除法运算规则是一样的),为“1001”。但要注意的是商只能为“0”,或者“1”,而不能是其他数。

(1)首先用“1”作为商试一下,相当于用“1”乘以除数“110”,然后把所得到的各位再与被除数的前4位“1001”相减。按照减法运算规则可以得到的余数为“011”。 (2)因为“011”与除数“110”相比,不足以被除,所以需要向低取一位,最终得到“0111”,此时的数就比除数“110”大了,可以继续除了。同样用“1”作为商去除,相当于用“1”去乘除数“110”,然后把所得的积与被除数中当前四位“0111”相减。根据以上介绍的减法运算规则可以得到此步的余数为“1”。

(3)因为“1”要远比除数“110”小,被除数向前取一位后为“11”,仍不够“110”除,所以此时需在商位置上用“0”作为商了。

(4)然后在被除数上继续向前取一位,得到“110”。此时恰好与除数“110”完全一样,结果当然是用“1”作为商,用它乘以除数“110”后再与被除数相减,得到的余数正好为“0”。证明这两个数能够整除。 这样一来,所得的商(1101)2就是两者相除的结果。

联系客服:779662525#qq.com(#替换为@)