《传热学》02

多维导热

2-62 设有如附图所示的一偏心环形空间,其中充满了某中储热介质(如石蜡类物质)。白天,从太阳能集热器中来的热水使石蜡熔化,夜里冷却水流过该芯管吸收石蜡的熔解热而使石蜡凝固。假设在熔解过程的开始阶段,环形空间中石蜡的自然对流可以忽略不计,内外管壁分别维持在均匀温度t1及t2。试定性画出偏心圆环中等温线的分布。 解:

2-63 有一用砖砌成的烟气通道,其截面形状如附图所示。已知内外壁温分别为t1?80℃,

t2?25℃,砖的导热系数为1.5W/(m.K),试确定每米长烟道上的散热量。

解:采用形状因子法计算,据已知条件

?8.156mb??ln?1.08?d??

所以??S??t1?t2??672.87W/m

2-64 设有如附图所示的一个无内热源的二维稳态导热物体,其上凹面,下表面分别维持在均匀温度t1及t2,其余表面绝热。试:(1)画出等温线分布的示意图;(2)说明材料的导热系数是否对温度分布有影响。

2-65 试计算通过一立方体墙角(见附图)的热损失,已知每面墙厚300mm,导热系数为0.8W/(m.K),内外壁温分别为400℃及50℃。如果三面墙的内壁温度t11,t12,t13各不相等,但均高于外壁温度,试提出一个估算热损失范围的方法。

解:?=?s?t?0.8?0.15?x?400?50??0.8?0.15?0.30?350?12.6W。

S?2?l1?tl1?tl2?tl3?3作为一种估算可以取作为内侧有效温度计算?t。

2-66一根输送城市生活用水得管道埋于地下3m深处,如附图所示,其外径d=500mm。土

壤的导热系数为1W/(mK),计算在附图所示条件下每米管道的散热量;在一个严寒的冬天,地面结冰层厚达1m深,其它条件不变,计算此时的散热量。 解:

2-67 对于矩形区域内的常物性,无内热源的导热问题,试分析在下列四种边界条件的组合下,导热物体为铜或钢时,物体中的温度分布是否一样:

(1) 四边均为给定温度;

(2) 四边中有一个边绝热,其余三个边均为给定温度; (3) 四边中有一个边为给定热流(不等于零),其余三个边中至少有一个边为给定温度; (4) 四边中有一个边为第三类边界条件。 解:(1一样,因为两种 情况下的数学描写中不出现材料物性值; (2)一样,理由同上;

(3)不一样,在给定热流的边上,边界条件中出现固体导热系数; (4)不一样,在第三类边界条件的表达式中出现固体导热系数。

2-68 一冰箱的冷冻室可看成是外形尺寸为0.5?0.75m?0.75m的立方体,其中顶面尺寸为

0.75m?0.75m。冷冻室顶面及四个侧面用同样厚度的发泡塑料保温,其导热系数为0.02W/(m.K);冷冻室的底面可近似认为是绝热的。冷冻室内壁温度为-10℃,外壁护板温

度为30℃。设护板很薄且与发泡塑料接触良好。试估算发泡塑料要多厚才可限制冷量损失在45W以下。

解:设发泡塑料的厚度为?x 采用形状因子法计算 其S

?x?x?x2?0.75?2x?2??0.54??0.5?2?x??4?0.15?x?2??0.75?2?x???0.5?2?x??2??0.75?2?x??x又??S??t1?t2?

代入数据解得

?x?0.03m

热阻分析

2-69 试写出通过半径为r1,r2的球壁的导热热阻的表达式。

2??0.75?2?x??0.5?2x??0.54??0.75?2?x??2??0.75?2x??0.5?2x?0.75??x??2???=解:球壳导热热流流量为:

2-70 试据定义导出具有两个等温面的固体导热热阻与其形状因子之间的关系,并据此写出表2-2中第5,6栏所示固体的导热热阻。

4???t1?t2??t1r1?1r2R??1r1?1r2,?4??。

?t? 解:

又??S??t1?t2?

R?所以

R?1S?

R1?ln第五栏:

?d1?d2?2?4w2??d1?d2?2?4w2?d1?d2?2?4w2??d1?d2?2?4w2/2??l

b??R2?ln?1.08?/2??ld??第六栏:

2-71 两块不同材料的平板组成如附图所示的大平板。两板的面积分别为A1,A2,导热系数分别为?1,?2。如果该大平板的两个表面分别维持在均匀的温度t1,t2,试导出通过该大平板的导

热热量计算式。

解:R1??/A1?1;R2??/A2?2 热阻是并联的,因此总热阻为

R1.R2??`R1?R2A1?1?A2?2

?t?t2?t1??A1?1?A2?2?Q??R?导热总热量: R?2-72 在如附图所示的换热设备中,内外管之间有一夹层,其间置有电阻加热器,产生热流密度q,该加热层温度为th。内管内部被温度为ti的流体冷却,表面传热系数为hi。外管的外壁面被温度为t0的流体冷却,表面传热系数为h0。内外管壁的导热系数分别为?i,?0。试画

出这一热量传递过程的热阻分析图,并写出每一项热阻的表达式。

Ri?R0?r2?r11?;Ri?2?r2?i2?r1hir3?r21;R0?2?r2?02?r2h0 解:

2-73 一块尺寸为10mm?10mm的芯片(附图中的1)通过厚0.02mm的环氧树脂层(附图中

2)与厚为10mm的铝基板(附图中的3)相联接。芯片与铝基板间的环氧树脂热阻可取为

?420.9?10m.K/W。芯片与基板的四周绝热,上下表面与t?=25℃的环境换热,表面传热

42系数均为h=150W/(m.K)。芯片本身可视为一等温物体,其发热率为1.5?10W/m。铝

2基板的导热系数为2600W/(m.K)。过程是稳态的。试画出这一热传递过程的热阻分析图,并确定芯片的工作温度。

提示:芯片的热阻为零,其内热源的生成热可以看成是由外界加到该节点上的。 解:设芯片的工作温度为t℃ 芯片上侧面传热量?1?hA?t?t??

?1?21????h 12芯片下侧面传热量

42Q?qA,Q????;q?1.5?10w/m12其中

代入数据可得t?75.35℃。

2-74人类居住的房屋本来只是用于防雨雪及盗贼,很少考虑节能与传热特性。随着世界范围内能源危机的发生以及人们生活水平的提高,节能与舒适已经成为建筑业的一个重要考虑原则。采用空心墙使考虑节能的一种有效手段。以居民的传墙结构如附图所示。已知室内温度

?2?At?t?为20℃,室外温度为5℃;室内墙面的表面传热系数为7W/(m2K),室外为28W/(m2K);第一层塑料板厚12mm,导热系数为0.16W/(mK),第二层厚mm,其中上部杨木层的导热系数为0.141W/(mK),下部为空气;第三层为砖,厚200mm,导热系数为0.72W/(mK)。试对于图示的这一段墙体画出热阻网络,并计算其散热损失。 解:

2-75 有一管内涂层的操作过程如附图所示。在管子中央有一辐射棒,直径为d1,其外表面发出的每米长度上的辐射热流密度为qr,管内抽成真空;涂层表面的吸收比很高,可近似地看成为黑体。管子外表面温度恒定为ts2,涂层很薄,工艺要求涂层表面温度维持在ts1。试:(1)导出稳态条件下用qr,ts2,r2,r3及管壁导热系数?表示的管壁中的温度分布表达式。

,r3?48mm,并要求ts1应达到150℃,(2)设ts2=25℃,?=15W/(m.K),r2?35mm求qr之值。

解:(1)管子内壁面的热流量为:?=?d1lqr,稳态条件下有:

??2??l?ts1?ts2?2???ts1?t???d1lqr??d1lqrln?r1r2?,在任一直径r处温度为t,则有:ln?rr2?,

2??t?ts2??d1qrt?d1qrln?r3r??ts22?即t?ts1?d1qrln?rr2?/?2??,或:ln?r34?,。

2??ts1?ts2?2?15??150?25???2.375?106Wm2d1ln?r3r2?0.005ln?4835?(2),

2???ts1?ts2?qL??d1qr??3.7?104Wmln?r3r2?每米长度上热负荷。 qr?2-76 刚采摘下来的水果,由于其体内葡萄糖的分解而具有“呼吸”作用,结果会在其表面析出CO2,水蒸气,并在体内产生热量。设在通风的仓库中苹果以如附图所示的方式堆放,并

有5℃的空气以0.6m/s的流速吹过。苹果每天的发热量为4000J/kg。苹果的密度

??840kg/m3,导热系数?=0.5W/(m.K);空气与苹果间的表面传热系数

h=6W/(m.K)。试计算稳态下苹果表面及中心的温度。每个苹果可按直径为80mm的圆球处理。

21??2?t???r????02解:利用有内热源的一维球坐标方程:r?r??r?

3d?2dt?cdtr?r2?2dt?r???r?/?r?????1?????c1dr?dr?33r2, ,dr,dr?cr2?t?????1?c26r

?tdtr?0,?0;r?R???h?t?t???rdr边界条件为:。

?为满足第一边界条件,c1必须为0。

联系客服:779662525#qq.com(#替换为@)