高等数学讲义第二�- 百度文库

¸ßµÈÊýѧ

µÚ¶þÕ һԪº¯Êý΢·Öѧ

¡ì2.1 µ¼ÊýÓë΢·Ö

£¨¼×£©ÄÚÈÝÒªµã Ò»¡¢µ¼ÊýÓë΢·Ö¸ÅÄî 1¡¢µ¼ÊýµÄ¶¨Òå

É躯Êýy?f(x)ÔÚµãx0µÄijÁìÓòÄÚÓж¨Ò壬×Ô±äÁ¿xÔÚx0´¦ÓÐÔöÁ¿?x£¬ÏàÓ¦µØº¯ÊýÔöÁ¿?y?f(x0??x)?f(x0)¡£Èç¹û¼«ÏÞ

f(x0??x)?f(x0)?y?lim

?x?0?x?x?0?xlim´æÔÚ£¬Ôò³Æ´Ë¼«ÏÞֵΪº¯Êýf(x)ÔÚx0´¦µÄµ¼Êý£¨Ò²³Æ΢ÉÌ£©£¬¼Ç×÷f?(x0)£¬»òy?x?x0£¬

dydxx?x0£¬

df(x)dxx?x0µÈ£¬²¢³Æº¯Êýy?f(x)ÔÚµãx0´¦¿Éµ¼¡£Èç¹ûÉÏÃæµÄ¼«ÏÞ²»´æÔÚ£¬Ôò

³Æº¯Êýy?f(x)ÔÚµãx0´¦²»¿Éµ¼¡£

µ¼Êý¶¨ÒåµÄÁíÒ»µÈ¼ÛÐÎʽ£¬Áîx?x0??x£¬?x?x?x0£¬Ôò

f?(x0)?f(x?)fx0() limx?x0x?x0ÎÒÃÇÒ²Òý½øµ¥²àµ¼Êý¸ÅÄî¡£ ÓÒµ¼Êý£ºf??(x0)?lim?x?x0f(x)?f(x0)f(x0??x)?f(x0) ?lim??x?0x?x0?xf(x)?f(x0)f(x0??x)?f(x0) ?lim??x?0x?x0?x×óµ¼Êý£ºf??(x0)?lim?x?x0ÔòÓÐ

f(x)ÔÚµãx0´¦¿Éµ¼?f(x)ÔÚµãx0´¦×ó¡¢ÓÒµ¼Êý½Ô´æÔÚÇÒÏàµÈ¡£

2£®µ¼ÊýµÄ¼¸ºÎÒâÒåÓëÎïÀíÒâÒå

Èç¹ûº¯Êýy?f(x)ÔÚµãx0´¦µ¼Êýf?(x0)´æÔÚ£¬ÔòÔÚ¼¸ºÎÉÏf?(x0)±íʾÇúÏßy?f(x)Ôڵ㣨x0,f(x0)£©´¦µÄÇÐÏßµÄбÂÊ¡£ ÇÐÏß·½³Ì£ºy?f(x0)?f?(x0)(x?x0)

24

¸ßµÈÊýѧ

·¨Ïß·½³Ì£ºy?f(x0)??1(x?x0)(f?(x0)?0) ?f(x0)ÉèÎïÌå×÷Ö±ÏßÔ˶¯Ê±Â·³ÌSÓëʱ¼ätµÄº¯Êý¹ØϵΪS?f(t)£¬Èç¹ûf?(t0)´æÔÚ£¬Ôòf?(t0)±íʾÎïÌåÔÚʱ¿Ìt0ʱµÄ˲ʱËٶȡ£

3£®º¯ÊýµÄ¿Éµ¼ÐÔÓëÁ¬ÐøÐÔÖ®¼äµÄ¹Øϵ

Èç¹ûº¯Êýy?f(x)ÔÚµãx0´¦¿Éµ¼£¬Ôòf(x)ÔÚµãx0´¦Ò»¶¨Á¬Ðø£¬·´Ö®²»È»£¬¼´º¯Êý

y?f(x)ÔÚµãx0´¦Á¬Ðø£¬È´²»Ò»¶¨ÔÚµãx0´¦¿Éµ¼¡£ÀýÈ磬y?f(x)?|x|£¬ÔÚx0?0´¦Á¬

Ðø£¬È´²»¿Éµ¼¡£

4£®Î¢·ÖµÄ¶¨Òå

É躯Êýy?f(x)ÔÚµãx0´¦ÓÐÔöÁ¿?xʱ£¬Èç¹ûº¯ÊýµÄÔöÁ¿?y?f(x0??x)?f(x0)ÓÐÏÂÃæµÄ±í´ïʽ

?y?A(x0)?x?o(?x) £¨?x?0£©

o(?x)ÊÇ?x?0ʱ±È?x¸ß½×µÄÎÞÇîС£¬ÆäÖÐA(x0)Ϊ?xΪÎ޹أ¬Ôò³Æf(x)ÔÚx0´¦¿É΢£¬

²¢°Ñ?yÖеÄÖ÷ÒªÏßÐÔ²¿·ÖA(x0)?x³ÆΪf(x)ÔÚx0´¦µÄ΢·Ö£¬¼ÇÒÔdyÎÒÃǶ¨Òå×Ô±äÁ¿µÄ΢·Ödx¾ÍÊÇ?x¡£

5£®Î¢·ÖµÄ¼¸ºÎÒâÒå

x?x0»òdf(x)x?x0¡£

?y?f(x0??x)?f(x0)ÊÇÇúÏßy?f(x)ÔÚµãx0´¦ÏàÓ¦

ÓÚ×Ô±äÁ¿ÔöÁ¿?xµÄ×Ý×ø±êf(x0)µÄÔöÁ¿£¬Î¢·Ödyx?x0ÊÇÇúÏß

y?f(x)ÔÚµãM0(x0,f(x0))´¦ÇÐÏßµÄ×Ý×ø±êÏàÓ¦µÄÔöÁ¿£¨¼û

ͼ£©¡£

6£®¿É΢Óë¿Éµ¼µÄ¹Øϵ

f(x)ÔÚx0´¦¿É΢?f(x)ÔÚx0´¦¿Éµ¼¡£

ÇÒdyx?x0?A(x0)?x?f?(x0)dx

Ò»°ãµØ£¬y?f(x)Ôòdy?f?(x)dx

25

¸ßµÈÊýѧ

ËùÒÔµ¼Êýf?(x)?dyÒ²³ÆΪ΢ÉÌ£¬¾ÍÊÇ΢·ÖÖ®É̵ĺ¬Òå¡£ dx

7£®¸ß½×µ¼ÊýµÄ¸ÅÄî

Èç¹ûº¯Êýy?f(x)µÄµ¼Êýy??f?(x)ÔÚµãx0´¦ÈÔÊǿɵ¼µÄ£¬Ôò°Ñy??f?(x)ÔÚµãx0´¦µÄµ¼Êý³ÆΪy?f(x)ÔÚµãx0´¦µÄ¶þ½×µ¼Êý£¬¼ÇÒÔy??³Æf(x)ÔÚµãx0´¦¶þ½×¿Éµ¼¡£

Èç¹ûy?f(x)µÄn?1½×µ¼ÊýµÄµ¼Êý´æÔÚ£¬³ÆΪy?f(x)µÄn½×µ¼Êý£¬¼ÇÒÔy(n)£¬

(n)x?x0d2y£¬»òf??(x0)£¬»ò

dx2x?x0µÈ£¬Ò²

ydny(x)£¬nµÈ£¬ÕâʱҲ³Æy?f(x)ÊÇn½×¿Éµ¼¡£

dx

¶þ¡¢µ¼ÊýÓë΢·Ö¼ÆËã 1£®µ¼ÊýÓë΢·Ö±í£¨ÂÔ£© 2£®µ¼ÊýÓë΢·ÖµÄÔËËã·¨Ôò

£¨1£©ËÄÔòÔËËãÇ󵼺Í΢·Ö¹«Ê½ £¨2£©·´º¯ÊýÇóµ¼¹«Ê½

£¨3£©¸´ºÏº¯ÊýÇ󵼺Í΢·Ö¹«Ê½ £¨4£©Òþº¯ÊýÇóµ¼·¨Ôò £¨5£©¶ÔÊýÇóµ¼·¨

£¨6£©ÓòÎÊý±íʾº¯ÊýµÄÇóµ¼¹«Ê½

£¨ÒÒ£©µäÐÍÀýÌâ

Ò»¡¢Óõ¼Êý¶¨ÒåÇóµ¼Êý

Àý Éèf(x)?(x?a)g(x)£¬ÆäÖÐg(x)ÔÚx?a´¦Á¬Ðø£¬Çóf?(a) ½â£ºf?(a)?limx?af(x)?f(a)(x?a)g(x)?0?lim?g(a) x?ax?ax?a

¶þ¡¢·Ö¶Îº¯ÊýÔڷֶε㴦µÄ¿Éµ¼ÐÔ Àý1 É躯Êý

?x2,x?1f(x)??

?ax?b,x?1ÊÔÈ·¶¨a¡¢bµÄÖµ£¬Ê¹f(x)ÔÚµãx?1´¦¿Éµ¼¡£

½â£º¡ß¿Éµ¼Ò»¶¨Á¬Ðø£¬¡àf(x)ÔÚx?1´¦Ò²ÊÇÁ¬ÐøµÄ¡£

f(x)?limx?1 ÓÉ f(1?0)?lim??x?1x?1226

¸ßµÈÊýѧ

f(1?0)?limf(x)?lim(ax?b)?a?b ??x?1x?1Ҫʹf(x)ÔÚµãx?1´¦Á¬Ðø£¬±ØÐëÓÐa?b?1»òb?1?a

f(x)?f(1)x2?1?lim?lim(x?1)?2 ÓÖ f??(1)?lim??x?1?x?1x?1x?1x?1f??(1)?lim?x?1f(x)?f(1)ax?b?1a(x?1)?lim?lim?a x?1?x?1?x?1x?1x?1Ҫʹf(x)ÔÚµãx?1´¦¿Éµ¼£¬±ØÐëf??(1)?f??(1)£¬¼´2?a.

¹Êµ±a?2,b?1?a?1?2??1ʱ£¬f(x)ÔÚµãx?1´¦¿Éµ¼.

x2en(x?1)?ax?bÀý2 Éèf(x)?lim£¬ÎÊaºÍbΪºÎֵʱ£¬f(x)¿Éµ¼£¬ÇÒÇóf?(x)

n??en(x?1)?1n(x?1)???£¬ ½â£º¡ßx?1ʱ£¬limen??x?1ʱ£¬limen(x?1)?0

n???x2,x?1£¬??a?b?1,x?1£¬ ¡à f(x)??2?x?1£¬??ax?b,f(x)?limx2?1£¬f(1)?ÓÉx?1´¦Á¬ÐøÐÔ£¬lim??x?1x?1a?b?1?1£¬¿ÉÖªa?b?1 2ÔÙÓÉx?1´¦¿Éµ¼ÐÔ£¬

x2?f(1)f??(1)?lim´æÔÚ

x?1?x?1f??(1)?lim?x?1(ax?b)?f(1)´æÔÚ

x?1ÇÒf??(1)?f??(1)

¸ù¾ÝÂå±Ø´ï·¨Ôòf??(1)?lim?x?12x?2 1a?a£¬¡à a?2 x?11ÓÚÊÇb?1?a??1 f??(1)?lim? 27

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ì滻Ϊ@)