µÚ°ËÕÂ Á·Ï°Ìâ
Ï°ÌâÒ»
Ò»¡¢Ìî¿Õ
1¡¢u?f(x?y),ÔòuÊÇ_____Ôªº¯Êý£¬fÊÇ____Ôªº¯Êý£¬f(x+y)ÊÇ____Ôªº¯Êý£¬uÓëf_____(ÊÇ¡¢²»ÊÇ)ͬһº¯Êý¡£
2¡¢u?g(x)Ϊ¶¨ÒåÔÚ[0£¬1]ÉϵÄÒ»Ôªº¯Êý£¬Èô°ÑËü¿´³É¶þÔªº¯Êý£¬ÔòÆ䶨ÒåÓò__________¡£ 3¡¢u???1,?0,xy?0,f(x,y)µÄÁ¬Ðøµã¼¯Îª____¡£
xy?0,¶þ¡¢µ¥ÏîÑ¡ÔñÌ⣺
1¡¢ÏÂÁм«ÏÞ´æÔÚµÄΪ_____¡£
x2x11; (B)lim; (C)lim; (D)limxsin (A)limx?0x?yx?0x?yx?0x?yx?0x?yy?0y?0y?0y?02¡¢ÓÐÇÒ½öÓÐÒ»¸ö¼ä¶ÏµãµÄº¯ÊýΪ_________¡£
(A)xx£» (B)e?xln(x2?y2)£» (C) £»(D)arctan(1?xy)
x?yyÈý¡¢Çó³ö²¢»³öÏÂÁк¯ÊýµÄ¶¨ÒåÓò
1?y1¡¢u?1?x?ln1?y2x2?y2 2¡¢u?zarccosz
ËÄ¡¢ ÇóÏÂÁм«ÏÞ
1?xy1¡¢lim2;x?0x?y2y?1
2¡¢limx?0y?0xyxy?1?1;1?cos(x2?y2)3¡¢lim;(x,y)?(0,0)sin(x2?y2)4¡¢lim(1?sinxy)(x,y)?(0,1)1x 1
Îå¡¢ÒÑÖªf(x?y,)?x?y,Çóf(x£¬y)µÄ±í´ïʽ¡£
Áù¡¢ÅжÏÏÂÁм«ÏÞÊÇ·ñ´æÔÚ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ¡£
yx22x?y1¡¢limx?0x?yy?0
x2y22¡¢lim2 x?0x?y2y?02
Ï°Ìâ¶þ
Ò»¡¢Ìî¿Õ
?f1¡¢?x_____(?,?)[(x0,y0)df(x,y0). dxx?x02¡¢fÔÚPµã²»Á¬Ðø£¬ÔòfÔÚPµãµÄÆ«µ¼Êý¶¼²»´æÔÚ£¬ÉÏÊöÃüÌâ______£¨ÕýÈ·£¬²»ÕýÈ·£©¡£ 3¡¢u?xyz£¬Ôò
?u?u?u¡£ ?_______,?_______,?________?x?y?z4¡¢z?12(x?y2)ÓëƽÃæy=4µÄ½»ÏßÔڵ㣨2£¬4£¬5£©µÄÇÐÏßÓëxÖáÕýÏòµÄ¼Ð½ÇÊÇ______¡£ 45¡¢
1?f?f,¶¼´æÔÚ£¬Ôòlimn[f(x?,y)?f(x,y)]?________¡£
n???n?x?y¶þ¡¢ µ¥ÏîÑ¡Ôñ 1¡¢
?f?f,ÔÚ(x0,y0)´¦¾ù´æÔÚÊÇf(x,y)ÔÚ(x0,y0)´¦Á¬ÐøµÄ_______Ìõ¼þ¡£ ?x?y(¦¡£©³ä·Ö£» £¨B£©±ØÒª£» (C) ³ä·Ö±ØÒª£» £¨D£©¼È²»³ä·ÖÓÖ²»±ØÒª¡£ 2¡¢ÒÔÖª
?f?0£¬Ôò______. ?x(A) f(x,y)¹ØÓÚxΪµ¥µ÷Ôö¼Ó£» £¨B£©f(x,y)>0£»
?2f?0; (D) f(x,y)?x(y2?1). (C)2?xÈý¡¢ÇóÏÂÁк¯ÊýµÄÆ«µ¼Êý
1¡¢z?lnx?y;
222¡¢F(x,y)??f(s)ds??exdx
y0xy123
ËÄ¡¢z?sin2(ax?by),ÇóÈ«²¿µÄ¶þ½×Æ«µ¼Êý¡£
Îå¡¢f(x,y)?
x2?y4ÔÚԵ㴦µÄÆ«µ¼Êý¡£
??(0,0,1),fxz??(1,0,2),fzzx???(2,0,1)¡£ Áù¡¢f(x,y,z)?xy?yz?zx£¬Çófxx
222 4