11 应用层实体和应用程序是否是相同的概念?并说明应用层在网络体系结构中的地位。
答:应用层实体和应用程序是不同的概念。
应用层是开放系统互连参考模型的最高层。它为应用进程提供了访问OSI环境的手段,是应用进程使用OSI功能的唯一窗口。
12 说明TCP/IP参考模型与OSI/RM相比有何优点和不足。 答:
TCP/IP网络体系结构的主要优点: 1)简单、灵活、易于实现 2)充分考虑不同用户的需求
TCP/IP主要缺点如下:
1)没有明显地区分出协议、接口和服务的概念 2)不通用,只能描述它本身 3)主机-网络层只是个接口 4)不区分物理层和数据链路层 5)有缺陷的协议很难被替换
13 TCP/IP参考模型的物理层和数据链路层并没有具体的协议,说明为什么要这样设计?
答:为了保证通过TCP/IP参考模型可将不同的物理网络互连起来。
14 IP协议是无连接的,这意味着网络层的传输有什么样的特点?带来的问题是什么? 答:IP协议是无连接的,这保证了网络层的传输效率。但同时也带来了可靠性、安全性等问题。
15 TCP/IP参考模型在运输层同时设计了TCP和UDP两个协议,说明两个协议的特点和适用场合。 答:
传输控制协议TCP是一个可靠的、面向连接的传输层协议,它将源主机的数据以字节流形式无差错地传送到目的主机。发送方的TCP将用户交来的字节流划分成独立的报文并交给网络层进行发送,而接收方的TCP将接收的报文重新装配交给接收用户。TCP还要进行流量控制,以防止接收方由于来不及处理发送方发来的数据而造成缓冲区溢出。
用户数据报协议UDP是一个不可靠的、无连接的运输层协议。UDP协议将可靠性问题交给应用程序解决。UDP协议主要面向请求/应答式的交易型应用,一次交易往往只有
一来一回两次报文交换,假如为此而建立连接和撤销连接,开销是相当大的。这种情况下使用UDP就非常有效。另外,UDP协议也应用于那些对可靠性要求不高,但要求网络的延迟较小的场合,如话音和视频数据的传送。
6楼
11. 在提高以太网速度的过程中,人们主要解决的问题有哪些(分10Mb/s到100Mb/s,100Mb/s到1000Mb/s分别论述)?升级到万兆以太网时,又有哪些问题需要解决?
答:需要解决的共通问题是保证使用相同的以太网帧格式。
速率从10Mb/s提高到100Mb/s时解决的问题包括:传输速率的提高所造成的RFI/EMI辐射增大和网络跨距缩小,同一网络中同时兼容10Mb/s和100Mb/s设备,在半双工方式下保证CAMA/CD协议继续有效。
速率从100Mb/s提高到1000Mb/s时解决的问题包括:网络跨距缩小和短帧较多时网络效率降低。同一网络中同时兼容10Mb/s、100Mb/s和1000Mb/s设备,在半双工方式下保证CAMA/CD协议继续有效。
速率从1000Mb/s提高到10000Mb/s时解决的问题主要是网络跨距的严重缩小以及如何有效地限制成本和功耗。
12. 考虑一个使用CSMA/CD介质访问控制技术的100Mb/s局域网,若该网络跨距为1km,则理论上其最小帧长度至少应为多少?
答:假定电磁波在铜介质中的传播速率约为0.7c,则:电磁波在网络中的一个来回的距离为2×103m,共需2×103/0.7c= 9.5238μs;当网络传输速率为100Mb/s时,9.5238μs可传输的位数为9.5238μs×100Mb/s≈952位。即理论上的最小帧长度为952位。
13. 以太网中全双工操作为什么能够增加网络跨距?在哪些介质上能采用全双工操作?
答:以太网中全双工操作时将不再使用CSMA/CD介质访问控制方法,因此不受最小帧长度的限制,这意味着在允许的信号衰减范围内网络跨距不再受限制。采用全双工操作时需要使用双绞线或光纤介质。
14. 一个令牌环网的介质长度为1km,传输速率为16Mb/s,网中共有20台工作站。若要求每个工作站在发送数据前的等待时间不能超过10ms,问此令牌环网能否满足要求?
答:该令牌环上可容纳的比特位数Br=传播时延(5μs/km)×介质长度×数据速率+∑中继器延迟=5μs/km×1km×16Mb/s+20=100位=12.5字节。
在最坏情况下,20台工作站在某一时刻都要发送数据,且数据帧长度都是令牌环的最
大帧长度4521字节(此值远大于该令牌环上可容纳的比特位数100位,所以按最大帧长度计算总延迟)。
每帧(4521字节)的发送时间为2.2605ms,如果采用早期令牌释放技术,第5个站的发送等待时间就已超过10ms,所以此令牌环网不能满足要求。
需要注意的是,这只是理论计算结果,在大多数情况下,网络负载率与上述的最坏情况并不相符。例如,当每个帧的长度不超过100字节时,该令牌环网是可以满足要求的。
7楼
15. 千兆以太网是如何解决冲突域收缩问题的?这与传统以太网中数据长度不足46字节时要进行填充有哪些相同之处?有哪些不同之处?
答:解决方法是将时间槽长度扩展到512字节。如果发送的帧长度小于512字节,那么物理层在发送完帧后紧接着再发送一个特殊的“载波扩展”符号序列,将整个发送长度扩展到512字节。
这与传统以太网中的数据填充有类似之处,即都用特殊数据填充帧以满足帧长的特殊要求,填充数据的处理对上层来说是透明的。但在本质上两者有很大的差别:传统以太网中的数据填充体现在帧内部(即它是帧的一部分),由MAC子层处理,而千兆位以太网的载波扩展体现在帧外部,由物理层处理。
16. 在半双工千兆以太网中,短帧过多会出现什么问题?千兆以太网是如何解决这个问题的?
答:短帧过多将使网络效率大大降低,因为(额外的)帧扩展部分将占用大部分的网络流量。千兆位以太网解决这个问题主要采用了帧突发技术,即允许一次可以发送多个短帧。
17. 半双工千兆以太网中,若要发送一个100字节的帧,从把第一个字节发送到物理介质上开始,需要用多长时间才能把它发送完?若要发送10个100个字节的帧,又需要多长时间?
答:半双工千兆以太网中,发完一个100字节的帧共需100×8÷1000Mb/s=0.8μs。若要发送10个100个字节的帧,则需8μs。
18.课堂上已讲过,此处略
19. 一个10BASE-T的部门局域网需要进行升级,有哪些可选择的方案?试分析其各自的优缺点。
答:方案1:升级为100BASE-T快速局域网,网卡、集线器、双绞线都需要兼容100BASE-T标准,可能都需要进行更换,升级成本较高。
方案2:升级为10BASE-T交换式以太网,需要将集线器更换为网络交换机,但网卡和双绞线都不需要更新,简单易行。
方案3:升级为100BASE-T交换式以太网,网卡、集线器、双绞线都需要兼容100BASE-T标准,可能都需要进行更换,升级成本较高,但网络性能可以得到明显的提升。
20. 简述802.11使用的CSMA/CA与802.3使用的CSMA/CD之间的区别。 答:CSMA/CA协议的关键在于冲突避免,它与CSMA/CD中的冲突检测有着本质上的区别。CSMA/CA不是在发送过程中去监听是否发生了冲突,而是事先就要设法避免冲突的发生。采用这种方法的原因是由于无线信道的特殊性质而使得在无线网络中检测信道是否存在冲突比较困难:
? 要检测冲突,设备必须能够在发送数据的同时接收数据,以便检测是否发生冲突,这对于无线网络设备是非常难以实现的。
? 无线介质上的信号强度的动态范围很大,因此发送站无法用信号强度的变化来检测是否发生了冲突。
CSMA/CA协议中发送过程的“载波检测多路访问”部分是在两个层次上进行的,一个是物理层次,另一个是虚拟层次。
物理层次上的载波检测机制与802.3以太网使用的载波侦听基本相同。要发送数据的站点首先要侦听介质上有无信号,如果信道处于“空闲”状态,它就可以开始发送数据。如果信道上有信号传播,它就推迟自己的传输而继续监听直到信道空闲。任何站点当检测到信道由忙变闲时,都必须通过退避算法与其他站点一起竞争信道的访问权,而不是直接访问信道。
虚拟层次上的载波检测是通过接收到其他站点要占用介质的通告而主动推迟本站的发送来实现的,其效果相当于“检测”到信道忙而延迟发送。虚拟载波检测利用了802.11帧中的“传输持续时间”字段。每一站点的MAC层将检查接收到的帧中的“传输持续时间”字段,如果发现该字段的值大于当前本站点的网络分配矢量NAV的值,就用该字段的值更新本站点的NAV。站点要发送数据时,NAV从设定的值开始不断减1,当NAV的值减为0,且物理层报告信道空闲时,它就可以开始发送数据。 21. CSMA/CA是如何实现“冲突避免”的?
答:采用三种机制来实现:预约信道、正向确认和RTS/CTS机制。
(1)预约信道。发送站点利用“传输持续时间”字段向所有其他无线站点通告本站点将要占用信道多长时间,以便让其它站在这段时间内不要发送数据,以避免冲突。 (2)正向确认机制。802.11规定接收站点若正确收到以它为目的地的数据帧时,就应向发送数据帧的站点发送一个ACK帧作为接收成功的肯定回答,否则将不采取任何动作。发送站点在发送完数据帧的规定时间内若没有收到ACK帧,就需要多次重新发送数据帧,直到收到ACK帧为止。
(3)通过请求发送RTS/允许发送CTS选项,以解决隐蔽站的冲突问题。 22. 解释IEEE 802.11标准中RTS/CTS机制的基本原理。