×éºÏÊýѧµÚËİ欿ª³Î±ê×¼´ð°¸-µÚÈýÕÂ

|A1¡ÉA2¡É?¡ÉAm| = |Z|£­

?i?1m| Ai |+

?i?j| Ai¡ÉAj |£­

i?j?k?|Ai¡ÉAj¡ÉAk|+?+(-1)m| A1¡ÉA2¡É?¡ÉAm |

= ???r??£­??1????r??+??2????????????r?n?n?m??m??n?1??m??n?2??m??n?3?m???????£­+?+(-1)??3??r??r??

???????i?m??n?i? = ?(?1)??i????r??

i?0????m?n?m?Òò´Ë£¬ÎÒÃǵõ½ £º??n?r??=

??3.33.ÊÔÖ¤£º

m??n?i?i??(?1)??i????r??¡£

i?0????m(a)D(n,r,k)=????D(n-k,r-k,0)

(b)D(n,r,k)=D(n-1,r-1,k-1)+(n-1)D(n-1,r-1,k)+(r-1){D(n-2,r-2,k)-D(n-2,r-2,k-1)}

ÆäÖÐD(n,r,-1)¶¨ÒåΪ0¡£

?r??k??n?(c)D(n,n,k)=nD(n-1,n-1,k)+(-1)??k??

??n-k

(d)????D(n,r,k)=????D(n-t,r-t,k-t)£¬t ¡Ý 0 (e)D(n,r,k)=rD(n-1,r-1,k)+D(n-1,r,k)£¬ÆäÖÐr < n

?k??t??r??t??r?(f)D(n,n-r,0) =???i??D(n-i,,r-i,0)£¬ÆäÖÐD(n,n,0) =Dn

i?0??rD(n,r,k)ÊÇ3.6½ÚÖеÄÍƹãÁ˵ĴíÅÅ¡£

[Ö¤].(a)´Ó1¡«n¸öÊýÖÐÈ¡³ör¸öÔªËؽøÐÐrλÅÅÁУ¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=iµÄ·½°¸(Æä·½°¸ÊýΪD(n,r,k))£»Ï൱ÓÚÔÚrλÖÐÑ¡³ök¸ö룬ÈÃÕâk¸öλÂú×ãÌõ¼þ£ºai=i(ÕâÓÐ????ÖÖÑ¡·¨)£¬ÆäÓàµÄr-k¸öλ´ÓʣϵÄn-k¸öÊýÖÐÑ¡Êý×öÍêÈ«µÄ´íÅÅ(ÎÞһλÂú×ãÌõ¼þai=i)(ÕâÓÐD(n-k,r-k,0)ÖÖÅÅ·¨)µÄ·½°¸(¸ù¾Ý³Ë·¨Ô­Àí£¬Æä·½°¸ÊýΪ????D(n-k,,r-k,0))¡£ËùÒÔ

?r??k??r??k?D(n,r,k)=????D(n-k,,r-k,0)¡£

(b)´Ó1¡«n¸öÊýÖÐÈ¡³ör¸öÔªËؽøÐÐÅÅÁУ¬ÒªÇóÆäÖÐÓÐÇÒ½öÓÐk¸öλÂú×ãÌõ¼þ£ºai=i£¬Æä·½°¸ÊýΪD(n,r,k)£»¸ù¾Ýa1=1ºÍa1?1¿É·Ö³ÉÁ½¸ö²¿·Ö£º

1)Èôa1=1£¬¼´Êý1ÅÅÔÚµÚһ룬Ôò´ËÖÖ·½°¸ÆäÓಿ·ÖΪ´Ó2¡«nÕân-1¸öÊýÖÐÈ¡³ör-1¸öÔªËؽøÐÐÅÅÁУ¬ÒªÇóÆäÖÐÓÐk-1¸öλÂú×ãÌõ¼þ£ºai=i£¬Æä·½°¸ÊýΪD(n-1,r-1,k-1)£»

¡¾µÚ 25 Ò³ ¹² 42 Ò³¡¿

?r??k?

2)Èôa1?1£¬¼´Êý1²»ÅÅÔÚµÚһ룬ÓÚÊÇ¿ÉÉèa1=i0(i0=2,3,?,n)£¬¼´Êýi0ÅÅÔÚµÚһ룬¸ù¾Ý2? i0? rºÍr+1? i0? n´ËÖÖ·½°¸¿É·Ö³ÉÁ½¸ö²¿·Ö£º

i)Èôr+1? i0? n£¬¼´Êýi0ÅÅÔÚµÚһ룬ÓÐn-rÖÖÑ¡·¨£¬´ËÖÖ·½°¸ÆäÓಿ·ÖΪ´Ó1,2,?,

r ,r+1,?,i0-1,i0+1,?,nÕân-1¸öÊýÖÐÈ¡³ör-1¸öÔªËؽøÐÐÅÅÁУ¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=i£¬ÆäÑ¡·¨ÎªD(n-1,r-1,k)£»ÓÚÊÇ£¬¸ù¾Ý³Ë·¨Ô­Àí£¬´ËÖÖ·½°¸ÓÐ(n-r)D(n-1,r-1,k)¸ö¡£

ii)Èô2? i0? r£¬¼´Êýi0ÅÅÔÚµÚһ룬ÓÐr-1ÖÖÑ¡·¨£¬²¢ÇÒÊýi0²»ÅÅÔÚµÚi0룬´ËÖÖ

·½°¸ÆäÓಿ·ÖËù¹¹³ÉµÄ·½°¸¼¯£¬ÎÒÃÇÉèÆäΪA

A£º´Ó1,2, ?,i0-1,i0+1,?,r,r+1,?,nÕân-1¸öÊýÖÐÈ¡³ör-1¸öÔªËؽøÐÐÅÅÁеķ½°¸£¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=i (2? i ? rÇÒ i ? i0)¡£

ΪÁ˼ÆËã|A|£¬ÎÒÃÇÀ´¿¼ÂÇÁíÒ»·½°¸¼¯B

B£º´Ó2,?,r,r+1,?,nÕân-1¸öÊýÖÐÈ¡³ör-1¸öÔªËؽøÐÐÅÅÁеķ½°¸£¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=i (2? i ? r)¡£

ÏÔÈ»£¬|B| = D(n-1,r-1,k)¡£µ«ÊÇ·½°¸¼¯B±È·½°¸¼¯A£¬ÉÙÁËÈ¡Êý¼¯Îª{1,j1,?,jr-2}(ÕâÀji? i0(1? i ? r-2))µÄ·½°¸£¬ÕâÖÖ·½°¸ÓÐD(n-2,r-2,k)¸ö£¬µ«ÊÇÓÖ¶àÁ˲»¶¯Î»¼¯Îª{ai0= i0,ai1= i1,?,aik?1= ik-1}µÄ·½°¸£¬ÕâÖÖ·½°¸ÓÐD(n-2,r-2,k-1)¸ö¡£ËùÒÔ£¬

|A|=|B|+D(n-2,r-2,k)-D(n-2,r-2,k-1) = D(n-1,r-1,k)+D(n-2,r-2,k)-D(n-2,r-2,k-1)¡£ Òò´Ë£¬¸ù¾Ý³Ë·¨Ô­Àí£¬ÕâÀà·½°¸×ÜÊýΪ

(r-1)|A|=(r-1){D(n-1,r-1,k)+D(n-2,r-2,k)-D(n-2,r-2,k-1)}¡£ ×îºó£¬°´¼Ó·¨Ô­Àí£¬ÎÒÃÇÓÐ

D(n,r,k) =D(n-1,r-1,k-1)+(n-r)D(n-1,r-1,k)

+(r-1) {D(n-1,r-1,k)+D(n-2,r-2,k)-D(n-2,r-2,k-1)}

=D(n-1,r-1,k-1)+(n-1)D(n-1,r-1,k)+(r-1){D(n-2,r-2,k)-D(n-2,r-2,k-1)}¡£

(c)D(n,n,k)Ϊ½«1¡«nÕân¸öÊý½øÐÐÈ«ÅÅÁУ¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=iµÄ·½°¸Êý£»

?n?Ï൱ÓÚÔÚnλÖÐÑ¡³ök¸ö룬ÈÃÕâk¸öλÂú×ãÌõ¼þ£ºai=i£¬ÕâÓÐ??k??ÖÖÑ¡·¨£¬ÆäÓàµÄn-k¸ö

??λÓÃʣϵÄn-k¸öÊý×öÍêÈ«µÄ´íÅÅ(ÎÞһλÂú×ãÌõ¼þai=i)£¬ÓÐDn-kÖÖ´íÅÅ£¬ÓÚÊÇ£¬¸ù¾Ý³Ë·¨Ô­Àí£¬ÓÐ????Dn-kÖÖ·½°¸¡£ËùÒÔ

?n??k??n?D(n,n,k)=??k??Dn-k¡£

??¸ù¾ÝpptµÚ¶þÕ¡ì9¶¨Àí2.9.1(2)Dn-nDn-1=(-1)n ¿ÉµÃDn-k= (n-k)Dn-k-1+(-1)n-k ÓÚÊÇ£¬ÓÐ

¡¾µÚ 26 Ò³ ¹² 42 Ò³¡¿

D(n,n,k)=????Dn-k

?n??k?n-k

??= (n-k)?D-k-1+(-1)n?????

?n??k??n??k?nn!n-k???= (n-k)Dn-k-1+(-1)??? k(n?k)!k!??= n

?n?(n?1)!?Dn-k-1+(-1)n-k? ??k(n?k?1)!k!??n?n?1?n-k?????= n?Dn-k-1+(-1)???? kk????=nD(n-1,n-1,k)+(-1)n-k????¡£

(d)´Ó1¡«n¸öÊýÖÐÈ¡³ör¸öÔªËؽøÐÐrλÅÅÁУ¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=i(ÓÐD(n,r,k)

?n??k??k?ÖÖÅÅ·¨)£¬È»ºóÔÙ´ÓÕâk¸öλÖÐÑ¡È¡t¸öλ´òÉϱê¼Ç*(ÓÐ??t??ÖÖÑ¡·¨)µÄ·½°¸(¸ù¾Ý³Ë·¨Ô­Àí£¬

??Æä·½°¸ÊýΪ????D(n,r,k))£»Ï൱ÓÚÏÈÔÚrλÖÐÑ¡³öt¸öλÈÃÆäÂú×ãÌõ¼þ£ºai=i²¢´òÉϱê¼Ç*(ÓÐ

?k??t??r???t??ÖÖÑ¡·¨)£¬¶øºóÔÚʣϵÄn-t¸öÊýÖÐÈ¡³ör-t¸öÔªËؽøÐÐr-tλÅÅÁУ¬ÒªÇóÆäÖÐÓÐk-t¸ö??λÂú×ãÌõ¼þ£ºai=i(ÓÐD(n-t,r-t,k-t)ÖÖÅÅ·¨)µÄ·½°¸(¸ù¾Ý³Ë·¨Ô­Àí£¬Æä·½°¸ÊýΪ

?r???t??D(n-t,r-t,k-t))¡£ËùÒÔ ???k??r????t?D(n,r,k)=??t??D(n-t,r-t,k-t)¡£ ????(e)´Ó1¡«n¸öÊýÖÐÈ¡³ör¸öÔªËؽøÐÐrλÅÅÁУ¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=i£¬Æä·½

°¸ÊýΪD(n,r,k)£»ÒòΪr < n£¬¸ù¾ÝËùÑ¡µÄr¸öÔªËØÖк¬ÊýnºÍ²»º¬Êýn¿É·Ö³ÉÁ½¸ö²¿·Ö£º

1)Èôº¬Êýn£¬ÔòÊýn¿ÉÅÅÔÚÕâr¸öλµÄÈÎһλÉÏ£¬ÓÐnÖÖÅÅ·¨£¬´ËÖÖ·½°¸ÆäÓಿ·ÖΪ´Ó1¡«n-1Õân-1¸öÊýÖÐÈ¡³ör-1¸öÔªËؽøÐÐr-1λÅÅÁУ¬ÒªÇóÆäÖÐÓÐk-1¸öλÂú×ãÌõ¼þ£ºai=i£¬Æä·½°¸ÊýΪD(n-1,r-1,k-1)£¬ÓÚÊÇ£¬¸ù¾Ý³Ë·¨Ô­Àí£¬Æä·½°¸ÊýΪrD(n-1,r-1,k)£»

2)Èô²»º¬Êýn£¬Ôò´ËÖÖ·½°¸Îª´Ó1¡«n-1Õân-1¸öÊýÖÐÈ¡³ör¸öÔªËؽøÐÐrλÅÅÁУ¬ÒªÇóÆäÖÐÓÐk¸öλÂú×ãÌõ¼þ£ºai=i£¬Æä·½°¸ÊýΪD(n-1,r,k)£»×îºó£¬°´¼Ó·¨Ô­Àí£¬ÎÒÃÇÓÐ

D(n,r,k)=rD(n-1,r-1,k)+D(n-1,r,k)¡£ (f)

¡¾µÚ 27 Ò³ ¹² 42 Ò³¡¿

D(n,n-r,0) =

?r????i??D(n-i,,r-i,0)£¬ÆäÖÐD(n,n,0) =Dn ¡£ i?0??r3.34.n?N£¬ÉèPn±íʾÔÚ{1,2,?,n}µÄÈ«ÅÅÁÐÖУ¬ÅųýÁËk£¬½ôËæÒÔk+1£¬k=1,2,?, k+1£¬ÊÔÖ¤£º

Pn= Dn+Dn-1£¬n?N ¡£

3.35.ÁîDn(k) = D(n,n,k)£¬ÊÔÖ¤ (a)Dn(k) =????Dn-k

?n??k??n??n??n?(b)??1??D1+??2??D2+?+??n??Dn = n! ??????(c)(k+1)Dn+1(k+1) = (n+1)Dn(k)¡£ 3.36. ÁîDn(k) = D(n,n,k)£¬ÊÔÖ¤ (a)

?kD(k) = n!

n

k?0n(b)Dn(0)£­Dn(1) = (-1)n (c)

?(k?1)k?0nn2Dn(k) = n!

(d)

?(k?1)?(k?r?1)D(k) = n!£¬ÆäÖÐr ? n ¡£

n

k?03.37.ÊÔÖ¤£º

(a)?(mn) = ?(m)?(n) (Ìõ¼þ£º(m,n)=1,¼´m,n»¥ËØ)

(b)¶ÔÓÚËØÊýpi£¬i ? 1, ?(pi)= pi-pi-1

[Ö¤]. (a)¿ÉÉè m=p11p22?pkk (ÆäÖУº?i?1 (1¡Ü i ¡Ü k) )

n=q11q22?qll (ÆäÖУº?j?1 (1¡Ü j ¡Ü l) )

ÓÉÓÚ (m,n)=1£¬¼´£¬m,n»¥ËØ£¬¹ÊËØÊýp1,p2,?,pkÓëËØÊýq1,q2, ?,qlûÓÐÏàͬµÄ£¬¼´£¬¶ÔÈκÎi,j(1¡Ü i ¡Ü k£¬1¡Ü j ¡Ü l)£¬¶¼ÓÐ pi¡Ùqj ¡£ ¹Ê´Ë ?(mn) = mn(1£­

??????111111)(1£­)?(1£­)(1£­)(1£­)?(1£­) p1p2pkq1q2ql111111)(1£­)?(1£­)]¡¤[n(1£­)(1£­)?(1£­)] p1p2pkq1q2ql = [m(1£­

= ?(m)?(n) ¡£

Èô (m,n)?1£¬¼´£¬m,n²»»¥ËØ£¬Ôò´ËµÈʽ²»³ÉÁ¢¡£ÀýÈ磬Èô

¡¾µÚ 28 Ò³ ¹² 42 Ò³¡¿

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ì滻Ϊ@)