3
¹ÊÑ¡£¨C£©¡£
2 £¨A£©¡£
,¹ÊÑ¡£¨A£©¡£
3 £¨B£©¡£
ÈÆxÖáÐýת£¬ÇúÏß·½³ÌÖк¬xÏî±£³Ö²»±ä£¬½«z»»³É
4 £¨B£©¡£
£¬¹ÊÑ¡£¨B£©¡£
¹ÊÑ¡£¨B£©¡£
5 £¨C£©¡£
×ó¼«ÏÞf(0-)=0£¬ÓÒ¼«ÏÞf(0+)=a£¬f(0)= a£¬ÒªÊ¹f(x)ÔÚx=0Á¬Ðø£¬È¡a=0£¬¹ÊÑ¡£¨C£©¡£ 6 £¨C£©¡£
·½³ÌÁ½¶Ë¶ÔxÇóµ¼£¬µÃ
¼´£¬ ¹ÊÑ¡£¨C£©¡£
7 £¨D£©¡£ dy dx
¹ÊÑ¡£¨D£©¡£
8 £¨C£©¡£
¹ÊÑ¡£¨C£©¡£
9 £¨A£©¡£
Åųý£¨B£©¡¢£¨C£©¡¢£¨D£©£¬¹ÊÑ¡£¨A£©¡£
10 £¨D£©¡£
¹ÊÑ¡£¨D£©¡£
11 £¨A£©¡£
2
¹ÊÑ¡£¨A£©¡£
12 £¨B£©¡£
5¦Ð
¹ÊÑ¡£¨B£©¡£
13 £¨B£©¡£
¹ÊÑ¡£¨B£©¡£
14 £¨C£©¡£ ÏÈÇóµÄÊÕÁ²°ë¾¶
µÄÊÕÁ²°ë¾¶²»±ä£¬ ÖðÏîÇ󵼺óµÄ¼¶Êý
¹ÊÑ¡£¨C£©¡£
15 £¨B£©¡£
f(x)Ϊżº¯Êý£¬¸µÀïÒ¶¼¶ÊýΪÓàÏÒ¼¶Êý Åųý£¨A£©¡¢£¨D£©¡£
ÓÉÊÕÁ²¶¨Àí£¬¼¶ÊýÔÚx =0´¦ÊÕÁ²ÓÚf(0)=0£¬Åųý£¨C£©£¬¹ÊÑ¡£¨B£©¡£16 £¨A£©¡£ ¾ÑéÖ¤£¬Âú×ã·½³Ì£¬ÇÒÂú×ã
17 £¨A£©¡£
ÌØÕ÷·½³Ì ÌØÕ÷¸ù£¬ xÆë´Î·½³Ìͨ½âΪ£¬¹ÊÑ¡£¨A£©¡£
£¬¹ÊÑ¡£¨A£©¡£
18 £¨B£©¡£ Óɵõ½P(A)
¹ÊÑ¡£¨B£©¡£
19 £¨B£©¡£ ÓɶþÏî¸ÅÂʹ«Ê½ 0313)µÃµ½ËùÇó¸Å ¹ÊÑ¡£¨B£©¡£
20 £¨A£©¡£
ÓÉËæ»ú±äÁ¿º¯ÊýµÄÆÚÍû¼ÆË㹫ʽµÃµ½
£¬
¹ÊÑ¡£¨A£©¡£
21 £¨A£©¡£ ÓÉ
¹ÊÑ¡£¨A£©¡£
22 £¨C£©¡£
ÓÉÓÚ
¡£ÓÚÊÇ
ÂÊΪ12
µÃµ½
´¦µÄÇÐÏòÁ¿Îª
Òò´Ë
¹ÊÑ¡£¨C£©¡£
23 £¨A£©¡£
ÓÉÓÚn=8£¬s=n-r =5£¬Òò´ËϵÊý¾ØÕóAµÄÖÈr=3£¬¹ÊÑ¡£¨A£©¡£ 24 £¨C£©¡£
¶þ´ÎÐÍ f ¶ÔÓ¦µÄ¶Ô³ÆÕó
a = -1ʱR(A)=2£¬¹ÊÑ¡£¨C£©¡£ ÒÑÖªR(A)=1¡£ÓÉ|A|=0½âµÃ»òµ±Ê±£»µ± 25 £¨A£©¡£
ÓÉp£½nKT£½(n1£«2n1)KT£½3n1KT£½3p1£¬¹Êp£½3p1 26 £¨B£© 27 £¨C£©¡£ ×ÜÆ½¾ùƽ¶¯¶¯ÄÜΪ 28 £¨A£©¡£ 22 ÓɺÍÖª£¬ Òòn²»±ä£¬¹Ê²»±ä£¬µ«ZËæÎ¶ȽµµÍ¶ø¼õС¡£
29 £¨C£©¡£ m3M2RT£¬¶øÓÉÓÚ£¬¹Ê ÓÉͼÐÎÖª£¬ÔµãO µÄÕñ¶¯·½³ÌΪ£¬¶ø
£¬ËùÒÔy0£½0.02cos100¦Ðt£¬¿¼Âǵ½²¨ÑØx
ÖáÕýÏò´«²¥£¬Òò´Ë£¬
30 £¨D£©¡£
ÓÉÌâÒâµÃ£¬x£½40m´¦ÖÊÔªÔÚt£½2sʱÏàλÊÇ
31 £¨D£©¡£
ÓÉ0£½A co£¬£½0£¬µÃÓÚ0£¬¹Ê½öÈ¡ ¦Ð2»ò£¬µ«OµãÖÊÔªÕýÏòyÕý·½ÏòÔ˶¯£¬ËÙ¶È´ó¡£ 32 £¨B£©¡£
33 £¨C£©¡£ £¬Òò´ËÓÐ4¸ö°ë²¨´ø¡£ 34 £¨B£©¡£ ¿ÉÓÉ
35 £¨D£©¡£ Òòvp
36 £¨A£©¡£ Óɹ«Ê½
²¨¶¯·½³ÌΪ