?xπ??xπ?
7.已知函数f(x)=23·sin?2+4?cos?2+4?-sin(x+π).
????(1)求f(x)的最小正周期;
π
(2)若将f(x)的图象向右平移6个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
25 / 27
?3?1?π??π?
解:(1)因为f(x)=3sin?x+2?+sin x=3cos x+sin x=2?cos x+sin x?=2sin?x+3?,
????2?2?所以f(x)的最小正周期为2π.
π?π??π?π??π?x-6?+?=2sin?x+6?.∵x∈[0,?(2)∵将f(x)的图象向右平移6个单位,得到函数g(x)的图象,∴g(x)=f?x-6?=2sin??
?3???????π?π7π?π],∴x+6∈?6,6?,
??
πππ
∴当x+6=2,即x=3时, ?π?sin?x+6?=1,g(x)取得最大值2. ??
π7π1?π?
当x+6=6,即x=π时,sin?x+6?=-2,g(x)取得最小值-1.
??
26 / 27
课程小结
1.确定y=Asin(ωx+φ)+k(A>0,ω>0,|φ|<π)中的参数的方法:
M-mM+m2π
在由图象求解析式时,若最大值为M,最小值为m,则A=2,k=2,ω由周期T确定,即由ω=T求出,φ由特殊点确定.
2.由y=sin x的图象变换到y=Asin(ωx+φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的|φ|
量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x而言,即x本身加减多少值,而不是于ωx加减多少值.
27 / 27