?(?P??Q)?(?P?Q)?(P??Q)?(P?Q)(主析取范式)
8、(R→Q)?P
解:(R→Q)?P?(?R?Q )?P
(?R?P)?(Q?P) (析取范式) ?
(?R?(Q??Q)?P)?((?R?R)?Q?P) ?
?(?R?Q?P)?(?R??Q?P)?(?R?Q?P)?(R?Q?P) ?(P?Q??R)?(P??Q??R)?(P?Q?R)(主析取范式)
?((R→Q)?P)?(?P??Q??R)?(?P?Q??R)?(P??Q?R)
?(?P?Q?R)?(?P??Q?R)(原公式否定的主析取范式)
(R→Q)?P?(P?Q?R)?(P??Q?R)?(?P?Q??R)
?(P??Q??R)?(P?Q??R)(主合取范式)
9、P→Q
解:P→Q??P?Q(主合取范式)
?(?P?(Q??Q))?((?P?P)?Q)
?(?P?Q)?(?P??Q)?(?P?Q)?(P?Q) ?(?P?Q)?(?P??Q)?(P?Q)(主析取范式)
10、 P??Q
解: P??Q (主合取范式)
?(P?(?Q?Q))?((?P?P)??Q) ?(P??Q)?(P?Q)?(?P??Q)?(P??Q) ?(P??Q)?(P?Q)?(?P??Q)(主析取范式)
11、P?Q
解:P?Q(主析取范式)?(P?(Q??Q))?((P??P)?Q)
?(P??Q)?(P?Q)?(P?Q)?(?P?Q) ?(P??Q)?(P?Q)?(?P?Q)(主合取范式)
12、(P?R)?Q
解:(P?R)?Q
??(P?R)?Q ?(?P??R)?Q
?(?P?Q)?(?R?Q)(合取范式) ?(?P?Q?(R??R))?((?P?P)?Q??R)
?(?P?Q?R)?(?P?Q??R)?(?P?Q??R)?(P?Q??R) ?(?P?Q?R)?(?P?Q??R)?(?P?Q??R)?(P?Q??R) ?(?P?Q?R)?(?P?Q??R)?(P?Q??R)(主合取范式) ?(P?R)?Q
?(?P??Q?R)?(?P??Q??R)?(P?Q?R)?(P??Q?R)?(P??Q??R)
(原公式否定的主析取范式)
(P?R)?Q
?(P?Q??R)?(P?Q?R)?(?P??Q??R)?(?P?Q??R)
?(?P?Q?R)(主析取范式)
13、(P?Q)?R
解:(P?Q)?R
??(?P?Q)?R ?(P??Q)?R(析取范式)
?(P??Q?(R??R))?((P??P)?(Q??Q)?R)
?(P??Q?R)?(P??Q??R)?(P?Q?R)?(P??Q?R)?(?P?Q?R)
?(?P??Q?R)
?(P??Q?R)?(P??Q??R)?(P?Q?R)?(?P?Q?R)
?(?P??Q?R)(主析取范式)
(P?Q)?R
??(?P?Q)?R ?(P??Q)?R(析取范式) ?(P?R)?(?Q?R)(合取范式)
?(P?(Q??Q)?R)?((P??P)??Q?R)
?(P?Q?R)?(P??Q?R)?(P??Q?R)?(?P??Q?R) ?(P?Q?R)?(P??Q?R)?(?P??Q?R)(主合取范式)
14、(P?(Q?R))?(?P?(?Q??R))
解:(P?(Q?R))?(?P?(?Q??R))
?(?P?(Q?R))?(P?(?Q??R))
?(?P?Q)?(?P?R)?(P??Q)?(P??R)(合取范式) ?(?P?Q?(R??R))?(?P?(Q??Q)?R)?(P??Q?(R??R))
?(P?(Q??Q)??R)
?(?P?Q?R)?(?P?Q??R)?(?P?Q?R)?(?P??Q?R)
?(P??Q?R)?(P??Q??R)?(P?Q??R)?(P??Q??R)
?(?P?Q?R)?(?P?Q??R)?(?P??Q?R)?(P??Q?R)
?(P?Q??R)?(P??Q??R)(主合取范式)
?(P?(Q?R))?(?P?(?Q??R))
?(?P??Q??R)?(P?Q?R)(原公式否定的主合取范式) (P?(Q?R))?(?P?(?Q??R))
?(P?Q?R)?(?P??Q??R)(主析取范式)
15、P?(?P?(Q?(?Q?R)))
解:P?(?P?(Q?(?Q?R)))
? P?(P?(Q?(Q?R))) ? P?Q?R(主合取范式) ?(P?Q?R)
?(P??Q?R)?(P??Q??R)?(P?Q??R)?(?P?Q?R)
?(?P?Q??R)?(?P??Q?R)?(?P??Q??R)
(原公式否定的主合取范式)
(P?Q?R)
?(?P?Q??R)?(?P?Q?R)?(?P??Q?R)?(P??Q??R)
?(P??Q?R)?(P?Q??R)?(P?Q?R)(主析取范式)
16、(P?Q)?(P?R)
解、(P?Q)?(P?R)
?(?P?Q)?(?P?R) (合取范式) ?(?P?Q?(R??R)?(?P?(?Q?Q)?R)
?(?P?Q?R)?(?P?Q??R)?(?P??Q?R)?(?P?Q?R) ?(?P?Q?R)?(?P?Q??R)?(?P??Q?R)(主合取范式)
(P?Q)?(P?R)
?(?P?Q)?(?P?R) ??P?(Q?R)(合取范式)
?(?P?(Q??Q)?(R??R))?((?P?P)?Q?R)
?(?P?Q?R)?(?P??Q?R)?(?P?Q??R)?(?P??Q?R)
?(?P?Q?R)?(P?Q?R)
?(?P?Q?R)?(?P??Q?R)?(?P?Q??R)?(?P??Q?R)?(P?Q?R)
(主析取范式)
三、证明:
1、P→Q,?Q?R,?R,?S?P=>?S
证明:
(1) ?R 前提 (2) ?Q?R 前提 (3) ?Q (1),(2) (4) P→Q 前提 (5) ?P (3),(4) (6) ?S?P 前提 (7) ?S (5),(6)
2、A→(B→C),C→(?D?E),?F→(D??E),A=>B→F
证明:
(1) A 前提 (2) A→(B→C) 前提 (3) B→C (1),(2)
(4) B 附加前提 (5) C (3),(4) (6) C→(?D?E) 前提 (7) ?D?E (5),(6) (8) ?F→(D??E) 前提