zplane Á㼫µãͼ£¨ÕÆÎÕ£© 2.6 IIRÂ˲¨Æ÷Éè¼Æ
buttord ButterworthÐÍÂ˲¨Æ÷½×ÊýµÄÑ¡Ôñ£¨ÕÆÎÕ£© cheb1ord Chebyshev1ÐÍÂ˲¨Æ÷½×ÊýµÄÑ¡Ôñ£¨ÕÆÎÕ£© cheb2ord Chebyshev2ÐÍÂ˲¨Æ÷½×ÊýµÄÑ¡Ôñ£¨ÕÆÎÕ£© ellipord ÍÖÔ²Â˲¨Æ÷½×´ÎÑ¡Ôñ£¨ÕÆÎÕ£© besself BesselÄ£ÄâÂ˲¨Æ÷Éè¼Æ butter ButterworthÂ˲¨Æ÷Éè¼Æ£¨ÕÆÎÕ£©
cheby1 Chebyshev IÐÍÂ˲¨Æ÷Éè¼Æ £¨ ͨ´ø²¨ÎÆ£©£¨ÕÆÎÕ£© cheby2 chebyshevIIÐÍÂ˲¨Æ÷Éè¼Æ£¨×è´ø²¨ÎÆ£©£¨ÕÆÎÕ£© ellip ÍÖÔ²Â˲¨Æ÷Éè¼Æ£¨ÕÆÎÕ£©
maxflat ͨÓÃÊý×ÖButterworthÂ˲¨Æ÷Éè¼Æ yulewalk µÝ¹éÊý×ÖÂ˲¨Æ÷Éè¼Æ 2.7 FIRÂ˲¨Æ÷Éè¼Æ
cremez ¸´ÏìÓ¦ºÍ·ÇÏßÐÔÏàλµÈ²¨ÎÆFIRÂ˲¨Æ÷Éè¼Æ
fir1 »ùÓÚ´°º¯ÊýµÄÓÐÏ޳弤ÏìÓ¦Â˲¨Æ÷Éè¼Æ----±ê×¼ÏìÓ¦£¨ÕÆÎÕ£© fir2 »ùÓÚ´°º¯ÊýµÄÓÐÏ޳弤ÏìÓ¦Â˲¨Æ÷Éè¼Æ----ÈÎÒâÏìÓ¦£¨ÕÆÎÕ£© fircls ¶àƵ´øÂ˲¨µÄ×îС·½²îFIRÂ˲¨Æ÷Éè¼Æ
fircls1 µÍͨºÍ¸ßͨÏßÐÔÏàλFIRÂ˲¨Æ÷µÄ×îС·½²îÉè¼Æ firs ×îСÏßÐÔÏàλÂ˲¨Æ÷Éè¼Æ firrcos ÉýÓàÏÒFIRÂ˲¨Æ÷Éè¼Æ intfilt ²åÖµFIRÂ˲¨Æ÷Éè¼Æ
kaiserord ÓÃKaiser´°¹À¼Æº¯Êýfir1²ÎÊý£¨ÕÆÎÕ£© remez Parks-McClellanÓÅ»¯Â˲¨Æ÷Éè¼Æ remezord Parks-McCllanÓÅ»¯Â˲¨Æ÷½×¹À¼Æ bartlett Bartlett´°£¨ÕÆÎÕ£© blackman Blackman´°£¨ÕÆÎÕ£© boxcar ¾ØÐδ° chebwin Chebyshev´°
hamming Hamming´°£¨ÕÆÎÕ£© hanning Hanning´°£¨ÕÆÎÕ£© kaiser Kaiser´°£¨ÕÆÎÕ£© triang Èý½Ç´°£¨ÕÆÎÕ£© 2.8 ÆäËû ²ÎÊý½¨Ä£
invfreqs ÓÉÆµÂÊÏìÓ¦±æÊ¶Á¬ÐøÊ±¼ä£¨Ä£Ä⣩Â˲¨Æ÷ invfreqz ÓÉÆµÂÊÏìÓ¦±æÊ¶Àëɢʱ¼äÂ˲¨Æ÷ levinson Levinson-DurbinµÝ¹éËã·¨ lpc ÏßÐÔÔ¤²âϵÊý
prony Prong·¨µÄʱÓòIIRÂ˲¨Æ÷Éè¼Æ
stmcb ÀûÓÃSteiglitz-McBrideµü´ú·¨ÇóÏßÐÔÄ£ÐÍ Ä£ÄâÔÐÍÉè¼Æ
besselap BesselÄ£ÄâµÍͨÂ˲¨Æ÷ÔÐÍÉè¼Æ buttap ButterworthÄ£ÄâµÍͨÂ˲¨Æ÷ÔÐÍÉè¼Æ cheblap Chevbyshev1ÐÍÄ£ÄâµÍͨÂ˲¨Æ÷ÔÐÍÉè¼Æ cheb2ap Chevbyshev2ÐÍÄ£ÄâµÍͨÂ˲¨Æ÷ÔÐÍÉè¼Æ ellipap ÍÖÔ²µÍͨÂ˲¨Æ÷ÔÐÍÉè¼Æ ƵÂʱ任
lp2bp µÍͨÖÁ´øÍ¨Ä£ÄâÂ˲¨Æ÷±ä»» lp2bs µÍͨÖÁ´ø×èÄ£ÄâÂ˲¨Æ÷±ä»» lp2hp µÍͨÖÁ¸ßͨģÄâÂ˲¨Æ÷±ä»» lp2lp µÍͨÖÁµÍͨģÄâÂ˲¨Æ÷±ä»» Â˲¨Æ÷ÀëÉ¢±ä»»
bilinear Ë«ÏßÐԱ任£¨ÕÆÎÕ£©
impinvar ³å¼¤²»±ä·¨µÄÄ£ÄâÖÁÊý×ÖÂ˲¨Æ÷±ä»»£¨ÕÆÎÕ£© ½»»¥Ê½¹¤¾ß
sptool ½»»¥Ê½Ðźš¢Â˲¨Æ÷ºÍƵÆ×·ÖÎö¹¤¾ß ÌØÊâÔËËã
cceps ¸´Ê±Æ×·ÖÎö
cplxpair ÖØÐÂÅÅÁÐ×éºÏ¸´Êý decimate ½µµÍÐòÁеIJÉÑùƵÂÊ deconv ½â¾í»ýºÍ¶àÏîʽ³ý·¨ demod ͨÐÅ·ÂÕæÖеĽâµ÷ÖÆ detrend È¥³ýÏßÐÔÇ÷ÊÆ dpss SlepainÐòÁÐ
dpssclear È¥³ýÊý¾Ý¿âSlepainÐòÁÐ dpssdir ´ÓÊý¾Ý¿âĿ¼ÏûÈ¥SlepainÐòÁÐ dpssload ´ÓÊý¾Ý¿âµ÷ÈëSlepainÐòÁÐ dpsssave SlepainÐòÁдæÈëÊý¾Ý¿â icceps µ¹¸´Ê±Æ×
interp ÕûÊý±¶Ìá¸ß²ÉÑùƵÂÊ medfilt1 һάÖÐÖµÂ˲¨ modulate ͨѶ·ÂÕæµ÷ÖÆ polystap Îȶ¨¶àÏîʽ rceps ʵʱÆ×ºÍ×îСÏàÎ»ÖØ¹¹ resample ÈÎÒâ±¶Êý¸Ä±ä²ÉÑùËÙÂÊ specgram ƵÆ×·ÖÎö
upfirdn ÀûÓÃfirÂ˲¨Æ÷ת»»²ÉÑùƵÂÊ vco µçѹ¿ØÖÆÕñµ´Æ÷ 3¡¢Ê±ÓòÐźŷ¢Éú 3.1»ù±¾Àëɢʱ¼äÐźÅ
ÀûÓÃMATLABÇ¿´óµÄÊýÖµ´¦Àí¹¤¾ßÀ´ÊµÏÖÐźŵķÖÎöºÍ´¦Àí£¬Ê×ÏȾÍÊÇҪѧ»áÓ¦ÓÃMATLABº¯ÊýÀ´¹¹³ÉÐźš£³£¼ûµÄ»ù±¾ÐźſÉÒÔ¼òÒª¹éÄÉÈçÏ£º
£¨1£©µ¥Î»²ÉÑùÐòÁÐ
?1n?0 £¨1.1£© ?[n]??
0n?0?
ÔÚMATLABÖпÉÒÔÀûÓú¯ÊýzerosʵÏÖ¡£
x?zeros(1,N);
x[0]?1;Èç¹û?[n]ÔÚʱ¼äÖáÉÏÑÓ³ÙÁËk¸öµ¥Î»£¬µÃµ½?[n?k]¼´£º
?1n?k £¨1.2£© ?[n?k]??
0n?0?
£¨2£©µ¥Î»½×Ô¾ÐòÁÐ
n?0?1 £¨1.3£© u[n]??
n?0?0
ÔÚMATLABÖпÉÒÔÀûÓú¯ÊýonesʵÏÖ¡£
x?ones(1,N);
£¨3£©ÕýÏÒÐòÁÐ
x[n]?Asin(2?fn??) £¨1.4£©
²ÉÓÃMATLABµÄʵÏÖ·½·¨£¬È磺
n?0:N?1 x?A*sin(2*pi*f*n??)£¨4£©ÊµÖ¸ÊýÐòÁÐ
nx[n]?A?a £¨1.5£©
ÆäÖУ¬A¡¢aΪʵÊý¡£²ÉÓÃMATLABµÄʵÏÖ·½·¨£¬È磺
n?0:N?1 x?a.^n£¨5£©¸´Ö¸ÊýÐòÁÐ
x[n]?A?e(??j?0)n £¨1.6£©
²ÉÓÃMATLABµÄʵÏÖ·½·¨£¬È磺
n?0:N?1x?A*exp((??j*?0)*n)
ΪÁË»³ö¸´ÊýÐźÅx[n]£¬±ØÐëÒª·Ö±ð»³öʵ²¿ºÍÐ鲿£¬»òÕß·ùÖµºÍÏà½Ç¡£MATLABº¯
Êýreal¡¢imag¡¢absºÍangle¿ÉÒÔÖð´Î¼ÆËã³öÒ»¸ö¸´ÊýÏòÁ¿µÄÕâЩº¯Êý¡£