电磁场与电磁波课后习题及答案--第四章习题解答

(0,d)。求板间的电位函数。

解 由于在(0,d)处有一与z轴平行的线电荷个区域,则这两个区域中的电位上,可利用?函数将线电荷ql,以x?0为界将场空间分割为x?0和x?0两

?1(x,y)和?2(x,y)都满足拉普拉斯方程。而在x?0的分界面

ql表示成电荷面密度?(y)?ql?(y?y0)。

电位的边界条件为

y ①

?1(x,0)=?1(x,a)?0

?2(x,0)=?2(x,a)?0

ql d??) a ②

1(x,y)?0(x?

ox题 4.6

?2(x,y)?0(x???)

?1(0,y)??2(0,y)

(??2ql?x???1?x)x?0????(y?d)0

由条件①和②,可设电位函数的通解为

??1(x,y)??A?n?xan?ynesin(n?1a) (x?0)

??n?y2(x,y)??B?xanensin(n?1a) (x?0)

由条件③,有

???An?yBn?ynsin()?nsin(n?1a?n?1a) ???An?n?y?n?nsin(n?1aa)??Bnn?1asin(n?yqa)?l??(y?d) 0 由式(1),可得

An?Bn (3)

sin(m?y将式(2)两边同乘以

a),并从0到a对y积分,有

1) (2)

( An?Bn?2qln??0?a0?(y?d)sin(2qln?yn?d)dy?sin()an??0a (4) n?d)a

由式(3)和(4)解得

An?Bn?

qln??0sin(?1(x,y)?故

1n?d?n?xan?ysin()esin()???0n?1naa (x?0) ql??q?l2(x,y)?1???nsin(n?dn?xan?ya)esin(a)0n?1 (x?0) 4.7 如题4.7图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷

ql。求槽内的电位函数。

解 由于在

(x0,y0)处有一与z轴平行的线电荷ql,以

x?x0为界将

场空间分割为

0?x?x0和x0?x?a两个区域,则这两个区(x0,y0)域中的电位?1(x,y)和?2(x,y)都满足拉普拉斯方程。而在x?x0的

分界面上,可利用?函数将线电荷ql表示成电荷面密度

?(y)?ql?(y?y0),电位的边界条件为

① ?1(0,y=),0?2(a,y)?0

② ?1(x,0)=?1(x,b)?0 ?2(x,0)=?2(x,b)?0

?1(x0,y)??2(x0,y )(??2?x???1?x)x?x0??ql??(y?y0)0

由条件①和②,可设电位函数的通解为

??1(x,y)??Ansin(n?yn?xn?1b)sinh(b) (0?x?x0)

y b ql o a x题4.7图

B?(x,y)??2n?1?nsin(n?yn?)sinh[(a?x)](x?x?a) bb 0由条件③,有

?n?x0n?yn?yn?Asin()sinh()?Bsin()sinh[(a?x0)]??nnbbbbn?1n?1 (1) ???Ann?1n?x0n?n?ysin()cosh()?bbb </

>>鐏炴洖绱戦崗銊︽瀮<<
12@gma联系客服:779662525#qq.com(#替换为@)