18.如图,已知圆O的面积为3π,AB为圆O的直径,∠AOC=80°,∠BOD=20°,点P为直径AB上任意一点,则PC+PD的最小值是 .
19.已知两个反比例函数y=,y=y=
,第一象限内的点P1、P2、P3、…、P2015在反比例函数
的图象上,它们的横坐标分别为x1、x2、x3、…、x2015,纵坐标分别是1、3、5、…,
共2015个连续奇数,过P1、P2、P3、…、P2015分别作y轴的平行线,与y=的图象交点依次为Q1(x'1,y'1)、Q2(x'2,y'2)、…、Q2015(x'2015,y'2015),则P2015Q2015的长度是 . 20.将连续正整数按以下规律排列,则位于第7行第7列的数x是 .
三.解答题(共6小题,共70分)
21.若关于x的不等式组只有4个整数解,求a的取值范围.
22.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
试卷第5页,总8页
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
23.如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ. (1)求证:RQ是⊙O的切线;
(2)当RA≤OA时,试确定∠B的取值范围; (3)求证:OB2=PB?PQ+OP2.
24.如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在y轴的正半轴上,O为坐标原点.现将正方形OABC绕点O按顺时针方向旋转,旋转角为θ(0o≤θ≤45o). (1)当点A落到y轴正半轴上时,求边BC在旋转过程中所扫过的面积;
(2)若线段AB与y轴的交点为M(如图2),线段BC与直线y=x的交点为N.当θ=22.5°时,求此时△BMN内切圆的半径;
(3)设△MNB的周长为l,试判断在正方形OABC旋转的过程中l值是否发生变化,并说明理由.
试卷第6页,总8页
25.(1)已知n=那么1+2+3+…+n=即1+2+3+…+n=
﹣﹣﹣+=
﹣
+. ﹣
,确定a与b的值,并计算
﹣
+…+
﹣
,
模仿上述求和过程,设n2=12+22+32+…+n2的结果.
(2)图1中,抛物线y=x2,直线x=1与x轴围成底边长为1的曲边三角形,其面积为S,现利用若干矩形面积和来逼近该值.
①将底边3等分,构建3个矩形(见图2),求其面积为S3; ②将底边n等分,构建n个矩形(如图3),求其面积和Sn并化简; ③考虑当n充分大时Sn的逼近状况,并给出S的准确值.
(3)计算图4中抛物线y=2x2与直线y=2x+4所围成的阴影部分面积.
26.如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
试卷第7页,总8页
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标; (3)当点P运动什么位置时,使得∠CPD=∠OAB,且
,求这时点P的坐标.
试卷第8页,总8页