37
圆柱的体积(2)
【教学内容】 圆柱的体积(2) 【教学目标】
能运用圆柱的体积计算公式解决简单的实际问题。 【重点难点】
容积计算和体积计算的异同,体积计算公式的灵活运用。 【教学准备】 教具。
【复习导入】 口头回答。
教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名学生回答。板书:圆柱的体积=底面积×高V=Sh=πr2h
【新课讲授】 1.教学例6。
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。
(2)学生尝试完成例6。 ①杯子的底面积:
3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2) ②杯子的容积:50.24×10=502.4(cm3)=502.4(mL) (3)比较一下补充例题和例6有哪些相同的地方和不同的地方?
学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。
2.教学补充例题。
(1)出示补充例题:教材第26页“做一做”第1题。
(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还要注意统一结果单位,方便比
38
较。
(3)教师评讲本题。 【课堂作业】
教材第26页“做一做”第2题,第28页练习五第3、4题。
第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。 第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。 答案:“做一做”:
2. 3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)
第3题: 3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米) 第4题:80÷16=5(cm) 【课堂小结】
通过这节课的学习,你有什么收获和感受? 【课后作业】
完成练习册中本课时的练习。
圆柱的体积=底面积×高
V=Sh=πr2h
《用圆柱的体积解决问题》教学设计
一、教学目标
39
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。 (二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。 二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。 教学难点:转化前后的沟通。 三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫 1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程 1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?) 预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?) 2.你觉得你能轻松解决什么问题?
40