¸ßÊýÊÔÌâÏÂ(2)

(A) y1?y2?y2?y1?0£» (B) y1?y2?y2?y1?0£» (C) y1?y2?y2?y1?0£» (D) y1?y2?y2?y1?0£®

¶þ¡¢Ìî¿ÕÌ⣨±¾Ìâ¹²5СÌ⣬ÿСÌâ4·Ö£¬¹²¼Æ20·Ö£©

???????1. ÒÑÖª|a|?1£¬|b|?2£¬aÓëbµÄ¼Ð½ÇΪ£¬Ôò|a?b|? 4222£®Éè?ÊÇÓÉÇúÃæz?1?x?yÓëz = 0Χ³ÉµÄÁ¢Ì壬Ôò?µÄÐÎÐÄ×ø±êΪ

3. ÉèÇúÏß?ΪÁ¬½Ó(1,1,1)ºÍ(2,3,4)Á½µãµÄÖ±Ï߶Σ¬ÔòÇúÏß»ý·Ö4. Éè?Îª×¶Ãæz??(x?y?z)ds=

?x2?y2±»Æ½Ãæz = 1½ØÏµÄÓÐÏÞ²¿·Ö£¬ÔòÇúÃæ»ý·Ö??zdS? £®

?x?05. Èô·½³Ìy? + y tanx = ?2cos2xÓÐÒ»¸öÌØ½ây = f (x), ÇÒf (0) = 0, ÔòlimÈý¡¢¼ÆËãÏÂÁи÷Ìâ £¨±¾Ìâ¹²5СÌ⣬ÿСÌâ7·Ö£¬¹²¼Æ30·Ö£©

f(x)?£ß£ß£ß£ß£® x1£®Çó¹ýµãM(?3,2,5)ÇÒÓëÁ½Æ½Ãæx ¨C4z = 3ºÍ2x ¨C y ¨C 5z = 1µÄ½»Ïß´¹Ö±µÄÆ½Ãæ·½³Ì.

2£®Çóº¯Êýu = x2 + 3yzÔÚµã(1, 1, 1)´¦ÑØÍÖÇòÃæx2 + 2y2 + 3z2 = 6ÔڸõãµÄÍâ·¨Ïß·½ÏòµÄ·½Ïòµ¼Êý¡£ 3£®¼ÆËã¶þÖØ»ý·Ö

??ydxdy£¬ÆäÖÐDÊÇÓÉy = x ¨C 4Óëy = 2xËùΧ³ÉµÄ±ÕÇøÓò.

2

D4£®Èç¹ûy = f (x)Âú×ã?y?1?x2x?x2?x?o(?x)£¬ÇÒf (1) = 1, Çóf (x)£®

5£®Èô? (x)Á¬Ðø£¬ÇÒÂú×ã·½³Ì?(x)?ex?Ì⣻(2)Çó? (x).

?x0t?(t)dt?x??(t)dt£¬(1)д³öÓë¸Ã·½³ÌµÈ¼ÛµÄ¶þ½×΢·Ö·½³Ì³õÖµÎÊ

0xËÄ¡¢ (8·Ö)Ò»ÖʵãÔÚÁ¦F?(x2?y)i?(x?sin2y)jµÄ×÷ÓÃÏ£¬ÓɵãO(0, 0)ÑØÉϰëÔ²y???2x?x2ÒÆµ½µãA(1,

?1)£¬ÇóÁ¦FËù×÷µÄ¹¦.

Îå¡¢(8·Ö)¼ÆËãÇúÃæ»ý·ÖΧ³ÉÁ¢ÌåµÄ±íÃæÍâ²à.

2222

z?4?x?y£¬ÆäÖÐ?ÊÇÓÉÅ×ÎïÃæ3z =x + y ºÍÇòÃæËùxzdydz?yzdzdx?xydxdy????2fÁù¡¢(8·Ö)É躯Êýf (x, y)Óжþ½×Á¬ÐøÆ«µ¼Êý£¬Âú×ã?0£¬ÇÒ´æÔÚÒ»Ôªº¯Êýh(u)£¬Ê¹f(x,y)?h(x2?y2)£¬Çó

?x?yf (x, y).

Æß¡¢(5·Ö)ÉèF(x, y) = (f 1(x, y), f 2(x, y))ÊÇ(x0, y0)ijÁÚÓòÄÚ¶¨ÒåµÄÏòÁ¿º¯Êý£¬¶¨Òå

||(f1(x,y),f2(x,y)||?f12(x,y)?f22(x,y)

Ϊ(f 1(x, y), f 2(x, y))µÄÄ££¬ Èç¹û||F(x0??x,y0??y)?F(x0,y0)?(A?x?B?y,C?x?D?y)||?o(?x2??y2)£¬ÆäÖÐA, B, C, DÊÇÓë?x, ?yÎ޹ضø½öÓëx0, y0Óйأ¬o(?x2??y2)ÊÇ?x2??y2µÄ¸ß½×ÎÞÇîС£¬Ôò³ÆF(x, y)ÔÚ(x0, y0)µã¿É΢£¬¼ÇΪ

dF(x,y)|(x0,y0)?(A?x?B?y,C?x?D?y)

Page 5 of 18

y,x2?y2)£¬ÇódF(x,y)|(1,1)¡£ x32´ð°¸ Ò»¡¢1.A£»2.C£»3.B£»4.D .¶þ¡¢1. 5£»2. £»3. 614£»4. 2?£»5. ?2.

38ÉèF(x,y)?(arctanÈý¡¢1. 4x + 3y + z +1= 0; 2.

1714; 3.18 ; 4.

2x?x2; 5..

ËÄ¡¢?71941?sin2. Îå¡¢?. Áù¡¢C1(x2?y2)?C2. 64272Æß¡¢(??x??y,?x??y).

12¸ßÊýÊÔÌâ 2011.07.14

Ò»¡¢Ñ¡ÔñÌâ 1£®Éèf(x,y)?x2?y4£¬Ôòº¯ÊýÔÚÔ­µãÆ«µ¼Êý´æÔÚµÄÇé¿öÊÇ[ ].

£¨A£©fx?(0,0)£¬fy?(0,0)¶¼´æÔÚ £¨B£©fx?(0,0)²»´æÔÚ£¬fy?(0,0)´æÔÚ £¨C£©fx?(0,0)´æÔÚ£¬ fy?(0,0)²»´æÔÚ £¨D£©fx?(0,0)£¬fy?(0,0)¶¼²»´æÔÚ 2£®ÉèÆ½Ãæ? µÄ·¨ÏòÁ¿Îªn?(A,B,C)£¬Ö±ÏßLµÄ·½ÏòÏòÁ¿Îªs?(m,n,p)£¬ÔòµÄ´¹Ö±µÄ[ ].

(A)³äÒªÌõ¼þ£» (B)³ä·ÖÌõ¼þ£» (C)±ØÒªÌõ¼þ£» (D)ÎÞ¹ØÌõ¼þ. 3£®Éè ? ÊÇÇòÃæx2 + y2 + z2 = R2£¬ÔòÏÂÁнá¹ûÕýÈ·µÄÊÇ[ ]. (A) (C) 4£®

5£®ÉèÇúÏßL:f(x,y)?1£¨f(x,y)¾ßÓÐÒ»½×Á¬ÐøÆ«µ¼Êý£©£¬¹ýµÚ¢òÏóÏÞÄڵĵãMºÍµÚ¢ôÏóÏÞÄڵĵãN£¬TΪLÉÏ´ÓµãMµ½µãNµÄÒ»¶Î»¡£¬ÔòÏÂÁÐСÓÚÁãµÄÊÇ[ ]. £¨A£©£¨C£©

??ABC??ÊÇÆ½Ãæ? ÓëÖ±ÏßLmnp432£» (B) dS??R£» (x?y?z)dS?0????3????(x?2?y2?z2)dS?0£» (D) ??(x2?y2?z2)dS?4?R4.

???Tf(x,y)dx £¨B£©?f(x,y)dy

TTf(x,y)ds £¨D£©?fx?(x,y)dx?fy?(x,y)dy

T¶þ¡¢Ìî¿ÕÌâ

??????????1£®Éè|a|?3£¬|b|?1£¬(a,b)?£¬Ôòa?bÔÚa?bÉϵÄͶӰΪ

62.½»»»»ý·Ö´ÎÐò

?dx?122x?x22?xf(x,y)dyΪ ?0dy?2?y11?1?y2f(x,y)dx

Page 6 of 18

3. ÉèÕýÏò±ÕÇúÏßLµÄ·½³ÌΪ|x|?|y|?1£¬Ôò4.

1ds= ?|x|?|y|?2L5£®É躯Êýz?z(x,y)ÓÉ·½³Ìx?az??(y?bz)ËùÈ·¶¨£¬ÆäÖÐ?(u)ÓÐÁ¬Ðøµ¼Êý£¬ÔòaÈý¡¢¼ÆËãÌâ

?z?z?b? ?x?y?2z1. Éèz?f(u,x,y),u?xe£¬ÆäÖÐf¾ßÓжþ½×Á¬ÐøÆ«µ¼Êý£¬Çó¡£

?x?yy?x?2z?12. ÇóÇúÃæz?x?yµÄÓëÖ±Ïß?´¹Ö±µÄÇÐÆ½Ãæ¡£

y?2z?2?223.¼ÆËã¶þÖØ»ý·Ö4.Çó

??Dy?xdxdy,ÆäÖÐDÊÇÓÉÖ±Ïßy?x,y?1£¬x?0ËùΧ³ÉµÄÆ½ÃæÇøÓò.

2??(x?y)dydz?(y?z)dzdx?(z?x)dxdy£¬?ÊÇÅ×ÎïÃæz?x??y2±»Æ½Ãæz = 1½ØÏµÄÓÐÏÞ²¿·Ö£¬·¨ÏòÁ¿

ÓëzÖáÕýÏò³ÉÈñ½Ç¡£

?xy???y??2x3,5. Çó½â³õÖµÎÊÌâ?

?y(1)?1,y?(1)?2,ËÄ¡¢ÉèÇòÌåÕ¼ÓбÕÇøÓò?:x?y?z?2z£¬ËüÔÚÄÚ²¿¸÷µã´¦µÄÃܶȴóСµÈÓÚ¸Ãµãµ½×ø±êÔ­µãµÄ¾àÀëµÄƽ·½£¬ÇóÇòÌå¶ÔÓÚzÖáµÄת¶¯¹ßÁ¿¡£

Îå¡¢(8·Ö)ÇóÅ×ÎïÃæ z?x2?y2 ÓëÆ½Ãæ x?y?z?1 µÄ½»Ïߣ¨ÍÖÔ²£©µ½Ô­µãµÄ×¾àÀëºÍ×î¶Ì¾àÀ룮 Áù¡¢5£®Éèf(x)ÊǷǸºÁ¬Ðøº¯Êý£¬ÇÒ

222?20f(x)dx?1£¬¼ÆËãÇúÏß»ý·Ö

?xdy?(y?eLx)dx£¬Ê½ÖÐLÎªÑØy?f(x)´ÓµãO(0,0)µ½A(2,0)µÄÇúÏß¶Î.

Æß¡¢Çóy???3y??2y?sinxµÄͨ½â.

´ð°¸

Ò»¡¢1.B, 2.A, 3.D, 4.C, 5.B. ¶þ¡¢1.2£¬ 2. 2.

?10dy?1?1?y22?yf(x,y)dx, 3.

42, 4. ?2 + 2, 5. 1¡£ 3?z?2zy?f1?e?f2£¬ Èý¡¢1. ?f1?ey?xe2yf11?eyf13?xeyf21?f23 ?x?x?y4?x4x21?? 2. 2x?2y?z?2¡£ 3. £¬ 4.? 5. y?152424ËÄ¡¢

32?¡£ 35 Page 7 of 18

Îå¡¢ÇúÏßµ½Ô­µãµÄ×¾àÀëºÍ×î¶Ì¾àÀë·Ö±ðΪ

15?10215?102 ºÍ 22£® Áù¡¢3?e2

Æß¡¢y?Cx2x31e?C2e?10cosx?110sinx

¸ßÊýÊÔÌâ 2012.07.12

Ò»¡¢Ñ¡ÔñÌâ

1£®Éè? (x)ΪÈÎÒâÒ»¸öxµÄ¿É΢º¯Êý£¬? (y) ΪÈÎÒâÒ»¸öyµÄ¿É΢º¯Êý£¬ÈôÒÑÖª?2F?2f?x?y??x?y£¬ÔòF (x, y)ÊÇ[ (A) f (x, y) + ? (x)£» (B) f (x, y) + ? (y)£»

(C) f (x, y) + ? (x) + ? (y)£» (D) f (x, y) + ? (x)? (y). 2£®ÔÚÇúÏßx = t , y = ?t2, z = t3µÄËùÓÐÇÐÏßÖУ¬ÓëÆ½Ãæx + 2y + z = 4ƽÐеÄÇÐÏß[ ]. (A)Ö»ÓÐ1Ìõ£» (B)Ö»ÓÐ2Ìõ£» (C)ÖÁÉÙ3Ìõ£» (D)²»´æÔÚ¡£ 3£®Éèf (x, y)ÊÇÁ¬Ðøº¯Êý£¬DÊÇÓÉy = x2, y = 0, x = 1ËùΧµÄÇøÓò£¬ÇÒf (x, y)Âú×ãºãµÈʽ f(x,y)?xy???f(x,y)dxdy

DÔòf (x, y) = [ ]. (A)xy + 1£» (B)xy?12£» (C)xy?14£» (D)xy?18¡£ 4£®

¶þ¡¢Ìî¿ÕÌâ

1£®¹ýµã(3, ?1, ?4)ÇÒÓëyÖáÏཻ£¬ÓÖÓëÆ½Ãæy + 2z = 0ƽÐеÄÖ±Ïß·½³ÌΪ_______________. 2£®½»»»»ý·Ö´ÎÐò

?12x?x222?x0dx?0f(x,y)dy??1dx?0f(x,y)dyΪ__________________.

3£®ÉèLΪԲÖÜx = acost, y = asint (0 ? t ? 2?), Ôò?(x2L?y2)3ds= _______________.

4£®

Èý¡¢¼ÆËãÏÂÁи÷Ìâ 1£®ÒÑÖªu?f?x2?y2,ex?y?f¾ßÓжþ½×Á¬ÐøÆ«µ¼Êý£¬Çó?u?2£¬ÆäÖÐu?x£¬?x?y¡£ 2£®¼ÆËã

???(2x?3y?z)dv£¬?ÊǰëÇòÃæz?2?x2?y2ºÍÐýתÅ×ÎïÃæz?x2?y2Χ³ÉµÄÁ¢Ìå¡£ ?3£®ÇóƽÐÐÓÚÆ½Ãæ6x + y + 6z + 5 = 0£¬¶øÓëÈý×ø±êÃæËù¹¹³ÉµÄËÄÃæÌåÌå»ýΪһ¸öµ¥Î»µÄÆ½Ãæ·½³Ì¡£

?4£®Çó½â³õÖµÎÊÌâ?dy?dt?ky¡£

??y|t?0?y0,5£®Çó

??(x?y?z)dS£¬Ê½ÖÐ?ÊÇÆ½Ãæy + z = 5±»ÖùÃæx2?y2?25Ëù½ØµÃµÄÓÐÏÞ²¿·Ö¡£ ? Page 8 of 18

].

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)