È˽̰æ¾ÅÄ꼶ÊýѧÉϲáµÚ22Õ¶þ´Îº¯Êý֪ʶµã×ܽá

?¹ØÓÚcxÖá¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇy??ax2?bx?c£» y?a2x?bxy?a?x?h??k¹ØÓÚxÖá¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇy??a?x?h??k£»

222¹ØÓÚyÖá¶Ô³Æ

?¹ØÓÚcyÖá¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇy?ax2?bx?c£» y?a2x?bxy?a?x?h??k¹ØÓÚyÖá¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇy?a?x?h??k£»

223¹ØÓÚÔ­µã¶Ô³Æ

?¹ØÓÚÔ­µã¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇcy??ax2?bx?c£» y?a2x?bx22ky??a?x?h??k£» y?a?x??h?¹ØÓÚÔ­µã¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇ

4¹ØÓÚ¶¥µã¶Ô³Æ

b2?¹ØÓÚ¶¥µã¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇc y?ax?bx£» y??ax?bx?c?2a22y?a?x?h??k¹ØÓÚ¶¥µã¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊÇy??a?x?h??k£®

22n?¶Ô³Æ 5¹ØÓÚµã?m£¬y?a?x?h??k22n?¶Ô³Æºó£¬µÃµ½µÄ½âÎöʽÊǹØÓÚµã?m£¬y??a?x?h?2m??2n?k

×ܽ᣺¸ù¾Ý¶Ô³ÆµÄÐÔÖÊ£¬ÏÔÈ»ÎÞÂÛ×÷ºÎÖֶԳƱ任£¬Å×ÎïÏßµÄÐÎ×´Ò»¶¨²»»á·¢

Éú±ä»¯£¬Òò´ËaÓÀÔ¶²»±ä£®ÇóÅ×ÎïÏߵĶԳÆÅ×ÎïÏߵıí´ïʽʱ£¬¿ÉÒÔÒÀ¾ÝÌâÒâ»ò·½±ãÔËËãµÄÔ­Ôò£¬Ñ¡ÔñºÏÊʵÄÐÎʽ£¬Ï°¹ßÉÏÊÇÏÈÈ·¶¨Ô­Å×ÎïÏߣ¨»ò±í´ïʽÒÑÖªµÄÅ×ÎïÏߣ©µÄ¶¥µã×ø±ê¼°¿ª¿Ú·½Ïò£¬ÔÙÈ·¶¨Æä¶Ô³ÆÅ×ÎïÏߵĶ¥µã×ø±ê¼°¿ª¿Ú·½Ïò£¬È»ºóÔÙд³öÆä¶Ô³ÆÅ×ÎïÏߵıí´ïʽ£® Ê®Îå¡¢¶þ´Îº¯ÊýͼÏóµÄƽÒÆ 1.ƽÒƲ½Ö裺

2¢Å ½«Å×ÎïÏß½âÎöʽת»¯³É¶¥µãʽy?a?x?h??k£¬È·¶¨Æ䶥µã×ø±ê?h£¬k?£» ¢Æ ±£³ÖÅ×ÎïÏßy?ax2µÄÐÎ×´²»±ä£¬½«Æ䶥µãƽÒƵ½?h£¬k?´¦£¬¾ßÌåƽÒÆ·½·¨ÈçÏ£º

y=ax2ÏòÉÏ(k>0)¡¾»òÏòÏÂ(k<0)¡¿Æ½ÒÆ|k|¸öµ¥Î»y=ax2+kÏòÓÒ(h>0)¡¾»ò×ó(h<0)¡¿Æ½ÒÆ|k|¸öµ¥Î»ÏòÓÒ(h>0)¡¾»ò×ó(h<0)¡¿Æ½ÒÆ |k|¸öµ¥Î»ÏòÉÏ(k>0)¡¾»òÏÂ(k<0)¡¿Æ½ÒÆ|k|¸öµ¥Î»ÏòÓÒ(h>0)¡¾»ò×ó(h<0)¡¿Æ½ÒÆ|k|¸öµ¥Î»y=a(x-h)2ÏòÉÏ(k>0)¡¾»òÏÂ(k<0)¡¿Æ½ÒÆ|k|¸öµ¥Î»y=a(x-h)2+k2ƽÒƹæÂÉ

ÔÚÔ­Óк¯ÊýµÄ»ù´¡ÉÏ ¡°hÖµÕýÓÒÒÆ£¬¸º×óÒÆ£»kÖµÕýÉÏÒÆ£¬¸ºÏÂÒÆ¡±£®

¸ÅÀ¨³É°Ë¸ö×Ö ¡°×ó¼ÓÓÒ¼õ£¬ÉϼÓϼõ¡±£®

Ê®Áù¡¢¸ù¾ÝÌõ¼þÈ·¶¨¶þ´Îº¯Êý±í´ïʽµÄ¼¸ÖÖ»ù±¾Ë¼Â·¡£ 1.Èýµãʽ¡£

£¨1£©ÒÑÖªÅ×ÎïÏßy=ax2+bx+c ¾­¹ýA£¨3£¬0£©£¬B£¨23£¬0£©£¬C£¨0£¬-3£©Èýµã£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£

£¨2£©ÒÑÖªÅ×ÎïÏßy=a(x-1)£²+4 £¬ ¾­¹ýµãA£¨2£¬3£©£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£

2.¶¥µãʽ¡£

£¨1£©ÒÑÖªÅ×ÎïÏßy=x2-2ax+a2+b ¶¥µãΪA£¨2£¬1£©£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£ £¨1£©ÒÑÖªÅ×ÎïÏß y=4(x+a)2-2a µÄ¶¥µãΪ£¨3£¬1£©£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£ 3.½»µãʽ¡£

£¨1£©ÒÑÖªÅ×ÎïÏßÓë x ÖáÁ½¸ö½»µã·Ö±ðΪ£¨3£¬0£©,(5,0),ÇóÅ×ÎïÏßy=(x-a)(x-b)µÄ½âÎöʽ¡£

1£¨2£©ÒÑÖªÅ×ÎïÏßÏßÓë x ÖáÁ½¸ö½»µã£¨4£¬0£©£¬£¨1£¬0£©ÇóÅ×ÎïÏßy=a(x-2a)(x-b)

2µÄ½âÎöʽ¡£ 4.¶¨µãʽ¡£

15?a£¨1£©ÔÚÖ±½Ç×ø±êϵÖУ¬²»ÂÛa È¡ºÎÖµ£¬Å×ÎïÏßy??x2?x?2a?2¾­¹ýx

22ÖáÉÏÒ»¶¨µãQ£¬Ö±Ïßy?(a?2)x?2¾­¹ýµãQ,ÇóÅ×ÎïÏߵĽâÎöʽ¡£

£¨2£©Å×ÎïÏßy= x2 +(2m-1)x-2mÓëxÖáµÄÒ»¶¨½»µã¾­¹ýÖ±Ïßy=mx+m+4£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£

£¨3£© Å×ÎïÏßy=ax2+ax-2¹ýÖ±Ïßy=mx-2m+2ÉϵĶ¨µãA£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£ 5.ƽÒÆʽ¡£

£¨1£©°ÑÅ×ÎïÏßy= -2x2 Ïò×óƽÒÆ2¸öµ¥Î»³¤¶È£¬ÔÙÏòÏÂƽÒÆ1¸öµ¥Î»³¤¶È£¬µÃµ½Å×ÎïÏßy=a( x-h)2 +k,Çó´ËÅ×ÎïÏß½âÎöʽ¡£

£¨2£©Å×ÎïÏßy??x2?x?3ÏòÉÏƽÒÆ,ʹÅ×ÎïÏß¾­¹ýµãC(0,2),ÇóÅ×ÎïÏߵĽâÎöʽ. 6.¾àÀëʽ¡£

£¨1£©Å×ÎïÏßy=ax2+4ax+1(a©ƒ0)ÓëxÖáµÄÁ½¸ö½»µã¼äµÄ¾àÀëΪ2£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£

£¨2£©ÒÑÖªÅ×ÎïÏßy=m x2+3mx-4m(m©ƒ0)Óë xÖá½»ÓÚA¡¢BÁ½µã£¬Óë Öá½»ÓÚCµã£¬ÇÒAB=BC,Çó´ËÅ×ÎïÏߵĽâÎöʽ¡£ 7.¶Ô³ÆÖáʽ¡£

£¨1£©Å×ÎïÏßy=x2-2x+(m2-4m+4)ÓëxÖáÓÐÁ½¸ö½»µã£¬ÕâÁ½µã¼äµÄ¾àÀëµÈÓÚÅ×ÎïÏ߶¥µãµ½yÖá¾àÀëµÄ2±¶£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£

£¨2£©ÒÑÖªÅ×ÎïÏßy=-x2+ax+4, ½»xÖáÓÚA,B£¨µãAÔÚµãB×ó±ß£©Á½µã£¬½» yÖá

3ÓÚµãC,ÇÒOB-OA=OC£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ¡£

48.¶Ô³Æʽ¡£

£¨1£©Æ½ÐÐËıßÐÎABCD¶Ô½ÇÏßACÔÚxÖáÉÏ£¬ÇÒA£¨-10£¬0£©£¬AC=16£¬D£¨2£¬6£©¡£AD½»y ÖáÓÚE£¬½«Èý½ÇÐÎABCÑØx ÖáÕÛµþ£¬µãBµ½B1µÄλÖã¬Çó¾­¹ýA,B,EÈýµãµÄÅ×ÎïÏߵĽâÎöʽ¡£

£¨2£©ÇóÓëÅ×ÎïÏßy=x2+4x+3¹ØÓÚyÖᣨ»òxÖᣩ¶Ô³ÆµÄÅ×ÎïÏߵĽâÎöʽ¡£ 9.Çеãʽ¡£ £¨1£©ÒÑÖªÖ±Ïßy=ax-a2(a¡Ù0) ÓëÅ×ÎïÏßy=mx2 ÓÐΨһ¹«¹²µã£¬ÇóÅ×ÎïÏߵĽâÎöʽ¡£ £¨2£© Ö±Ïßy=x+a ÓëÅ×ÎïÏßy=ax2 +k µÄΨһ¹«¹²µãA£¨2£¬1£©,ÇóÅ×ÎïÏߵĽâÎöʽ¡£

10.Åбðʽʽ¡£ £¨1£©ÒÑÖª¹ØÓÚXµÄÒ»Ôª¶þ´Î·½³Ì£¨m+1£©x2+2(m+1)x+2=0ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬ÇóÅ×ÎïÏßy=-x2+(m+1)x+3½âÎöʽ¡£

£¨2£©ÒÑÖªÅ×ÎïÏßy=(a+2)x2-(a+1)x+2aµÄ¶¥µãÔÚxÖáÉÏ,ÇóÅ×ÎïÏߵĽâÎöʽ¡£

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ì滻Ϊ@)