湖北省十堰市2019-2020学年中考数学教学质量调研试卷含解析

标.

25.(10分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F. (1)求证:CD与⊙O相切;

(2)若BF=24,OE=5,求tan∠ABC的值.

26.(12分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.

(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).

27.(12分)计算:(﹣1)2018﹣29+|1﹣3|+3tan30°.

参考答案

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.C 【解析】 【分析】

作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=2AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质2得到AC=2AB=22+2,OC=

1AC=2+1,所以CH=AC-AH=2+2,然后证明△CON∽△CHM,2再利用相似比可计算出ON的长. 【详解】

试题分析:作MH⊥AC于H,如图,

∵四边形ABCD为正方形, ∴∠MAH=45°,

∴△AMH为等腰直角三角形, ∴AH=MH=

22AM=×2=2, 22∵CM平分∠ACB, ∴BM=MH=2, ∴AB=2+2,

∴AC=2AB=2(2+2)=22+2, ∴OC=

1AC=2+1,CH=AC﹣AH=22+2﹣2=2+2, 2∵BD⊥AC, ∴ON∥MH, ∴△CON∽△CHM, ∴

ONOCON2?1?,即, ?MHCH22?2∴ON=1. 故选C.

【点睛】

本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质. 2.D

【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.

详解:等腰三角形的两个底角相等,(1)正确;

对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误. 故选D.

点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 3.A 【解析】

∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根, ∴△>0,即82-4q>0, ∴q<16, 故选 A. 4.B 【解析】 【分析】

连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接. 四边形对角互补得到∠BCD=110°【详解】

如下图,连接AD,BD,

∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°, ∵AB为直径,∴∠ADB=90°, ∴∠BAD=90°-20°=70°, ∴∠BCD=180°-70°=110°. 故选B

【点睛】

本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键. 5.A 【解析】

试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A. 考点:一次函数图象上点的坐标特征. 6.D 【解析】 试题分析:方程

2x?2??3,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D. x?11?x考点:解分式方程的步骤. 7.B 【解析】

试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限, ∴k<0,b>0, 故选B.

考点:一次函数的性质和图象 8.B 【解析】

作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,

联系客服:779662525#qq.com(#替换为@)