【考试必备】山东淄博实验中学中考提前自主招生数学模拟试卷(6套)附解析

经过的象限有( ) A.二、四

二.填空题(共10小题,每题4分)

11.若规定两数a,b通过运算得4ab,即a*b=4ab,若x*x+2*x﹣2*4=0,则x= . 12.设直线kx+(k+1)y﹣1=0与坐标轴所构成的直角三角形的面积为Sk,则S1+S2+…+S2008= . 13.已知m,n为正整数,若

<<

,当m最小时分数= .

B.一、三

C.二、三、四

D.一、三、四

14.设[x]表示不超过x的最大整数(例如:[2]=2,[1.25]=1),则方程3x﹣2[x]+4=0的解为 .

15.已知b﹣a=,2a2+a=,那么﹣a的值为 .

16.四边形ABCD中,∠A=∠C=90°,∠ADC=60°,AB=11,BC=2,则BD= .

17.观察下列各式:32=52﹣42;52=132﹣122;72=252﹣242;92=412﹣402;…请你将猜想到的规律用含正整数n(n≥1)的等式表示出来 .

18.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为 .

19.如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一定点,延长BP至P′,将△ABP绕点A旋转后,与△ACP′重合,如果AP=

,那么PP′= .

20.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n个图形中需要黑色瓷砖 块(用含n的代数式表示).

三.解答题(共6小题,共70分)

21.某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.

(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?

(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量)

22.计算:

23.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的解析式及顶点D的坐标; (2)判断△ABC的形状,证明你的结论;

+()1﹣4cos45°﹣2÷×2﹣(2009﹣

)0+|2﹣

|

(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

24.如图:直角梯形ABCD中,AD∥BC,AD<BC,∠B=90°,AB=7,BC﹣AD=1.以CD为直径的圆O与AB有两个不同的公共点E、F,与BC交于点G. (1)求⊙O的半径; (2)求证:AE=BF;

(3)当AE=1时,在线段AB上是否存在点P,以点A,P,D为顶点的三角形与以点B,P,C为顶点的三角形相似?若存在,在图中描出所有满足条件的点P的位置(不要求计算);若不存在,请说理由.

(4)当AE为何值时,能满足(3)中条件的点P有且只有两个?

25.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,将其长度伸长为OP0的2倍,得到线段OP1;再将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数) (1)求点P6的坐标; (2)求△P5OP6的面积;

(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来.

联系客服:779662525#qq.com(#替换为@)