华东师大心理统计学大纲

第四节 相对差异量

一、相对差异量的概念

上述全距、四分位距、平均差及标准差都是带有与原观察值相同单位的名数,称为绝对差异量。这种差异量对两种单位不同,或单位相同而两个平均数相差较大的资料,都无法比较差异的大小,必须用相对差异量(即差异系数)进行比较。

所谓差异系数是指标准差与其算术平均数的百分比。它是没有单位的相对数。其计算公式是(4.11)

二、差异系数的用途 1、比较不同单位资料的差异程度

2、比较单位相同而平均数相差数较大的两组资料的差异量程度 3、可判断特殊差异情况

三、差异系数的应用条件

从测验的理论来说,只有等比量表才使平均数等于零成为不可能。也就是说,用来测量的量尺,既

具有等距的单位,又具有绝对零点,这时所测量出的数据其平均数才不可能等于零,这时才能计算差异系数。

第五节 偏态量及峰态量

偏态量及峰态量是用以描述数据分布特征的统计量。 一、偏态量

1、利用算术平均数与众数或中位数的距离来计算。其公式为(4.12)。

当SK=0,则分布呈对称形;当SK>0时,分布呈正偏态;当SK<0时,分布为负偏态。 2、根据动差来计算。其公式为(4.14)。 二、峰态量

1、用两个百分位距来计算。其公式为(4.16)。

2、根据动差来计算。其公式为(4.17)。

第五章 概率及概率分布

第一节 概率的一般概念 一、概率的定义

概率因寻求的方法不同有两种定义,即后验概率和先验概率。 1、后验概率的定义

以随机事件A在大量重复试验中出现的稳定频率值作为随机事件A概率的估计值,这样寻得的概率称为后验概率。计算公式是(5.2)。 2.先验概率的定义

先验概率是通过古典概率模型加以定义的,故又称为古典概率。古典概率模型要求满足两个条件: (1)试验的所有可能结果是有限的;

(2)每一种可能结果出现的可能性(概率)相等。若所有可能结果的总数为n,随机事件A包括m个可能结果,则事件A的概率计算公式为(5.3)。

二、概率的性质

1、任何随机事件A的概率都是介于0与1之间的正数; 2、不可能事件的概率等于0;

3、必然事件的概率等于1。

三、概率的加法和乘法

1、概率的加法

在一次试验中不可能同时出现的事件称为互不相容的事件。

两个互不相容事件和的概率,等于这两个事件概率之和。用公式表示为(5.4)和(5.5)。 2.概率的乘法

A事件出现的概率不影响B事件出现的概率,这两个事件为独立事件。

两个独立事件的概率,等于这两个事件概率的乘积。用公式表示为(5.6)和(5.7)。

第二节 二项分布

一、二项试验

满足以下条件的试验称为二项试验:(1)一次试验只有两种可能结果,即成功和失败;(2)各次试验相互独立,互不影响;(3)各次试验中成功的概率相等。 二、二项分布函数

二项分布是一种离散型随机变量的概率分布。

用n次方的二项展开式来表达在n次二项试验中成功事件出现不同次数(X=0,1,?,n)的概念分布叫做二项分布。 二项展开式的通式(5.8)就是二项分布函数,运用这一函数式可以直接求出成功事件恰好出现X次的概率。

三、二项分布图

从二项分布图可以看出,当p=q,不管n多大,二项分布呈对称形。当n很大时,二项分布接近于正态分布。当n趋近于无限大时,正态分布是二项分布的极限。 四、二项分布的平均数和标准差

当二项分布接近于正态分布时,在n次二项实验中成功事件出现次数的平均数和标准差分别可以由公式(5.9)和

>>鐏炴洖绱戦崗銊︽瀮<<
12@gma联系客服:779662525#qq.com(#替换为@)